Skip to main content
Log in

Relaxation of InGaN thin layers observed by X-ray and transmission electron microscopy studies

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Double-crystal and triple-axis x-ray diffractometry and transmission electron microscopy are used to characterize the microstructure, strain, and composition of InGaN layers grown on GaN by metalorganic chemical vapor deposition (MOCVD). Three different samples with increasing In concentration have been studied, all grown on GaN deposited on sapphire either with GaN or AlN buffer layers. It was found that InGaN layers with nominal 28% and 40% InN content consist of two sub-layers; the first sub-layer is pseudomorphic with the underlying GaN with lower In content than nominal. The top sub-layer is fully relaxed with a high density of planar defects and In content close to the nominal value. This is in contrast to a common assumption applied to InGaN quantum wells that ‘quantum-dot like areas’ are formed with different In content. The sample with the nominal indium concentration of 45% does not exhibit any intermediate strained layer, is fully relaxed and the In concentration (43.8%) agrees well with the nominal value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.H. Edgar et al., editors, Properties, Processing and Applications of GaN and Related Semiconductors, (London: Datareviews Series No. 23, 1999).

  2. S. Chichibu, K. Wada, and S. Nakamura, Appl. Phys. Lett. 71, 2346 (1997).

    Article  CAS  Google Scholar 

  3. I. Ho and G.B. Stringfellow, Appl. Phys. Lett. 69, 2701 (1996).

    Article  CAS  Google Scholar 

  4. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Matushita, and T. Mukai, MRS Internet J. Nitride Res. 4S1, G1.1 (1999).

    Google Scholar 

  5. M.K. Behbehani, E.L. Piner, S.X. Liu, N.A. El-Masry, and S.M. Bedair, Appl. Phys. Lett. 75, 2202 (1999).

    Article  CAS  Google Scholar 

  6. S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett. 69, 4188 (1996).

    Article  CAS  Google Scholar 

  7. Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, and S. Nakamura, Appl Phys. Lett. 70, 981 (1998).

    Article  Google Scholar 

  8. P.A. Grudowski, C.J. Eiting, J. Park, B.S. Shelton, D.J.H. Lambert, and R.D. Dupuis, Appl. Phys. Lett. 71, 1537 (1997).

    Article  CAS  Google Scholar 

  9. H. Sakai, T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Amano, and I. Akasaki, J. Cryst. Growth 189–190, 831 (1998).

    Article  Google Scholar 

  10. N.A. El-Masry, E.L. Piner, S.X. Liu, and S.M. Bedair, Appl. Phys. Lett. 72, 40 (1998).

    Article  CAS  Google Scholar 

  11. P.F. Fewster and N.L. Andrew, J. Appl. Crystallogr. 28, 451 (1995).

    Article  CAS  Google Scholar 

  12. M. Halliwell, Ins. Phys. Conf. Ser. 134 (Bristol, U.K.: IOP, 1993) p. 555.

    Google Scholar 

  13. M. Schuster, P.O. Gervais, B. Jobs, M. Hosler, R. Averbeck, M. Riechert, A. Iberl, and M. Stommer, J. Phys. D.: Appl. Phys. 32, A56 (1999).

    Article  CAS  Google Scholar 

  14. J. Hornstra and W.J. Bartels, J. Cryst. Growth 44, 513 (1978).

    Article  CAS  Google Scholar 

  15. A. Sanz-Hervas, M. Aguilar, J.L. Sanchez-Rojas, A. Sacedon, E. Calleja, C. Villar, E.J. Abril, and M. Lopez, J. Appl. Phys. 82, 3297 (1997).

    Article  CAS  Google Scholar 

  16. D. Doppalapudi, S.N. Basu, and T.D. Moustakas, J. Appl. Phys. 85, 883 (1999).

    Article  CAS  Google Scholar 

  17. L.T. Romano, B.S. Krusor, M.D. McCluskey, D.P. Bour, and K. Nauka, Appl. Phys. Lett. 73, 1757 (1998).

    Article  CAS  Google Scholar 

  18. J.W. Matthews and A.E. Blackslee, J. Cryst. Growth 32, 65 (1974).

    Google Scholar 

  19. T. Takeuchi, H. Takeuchi, S. Soto, H. Sakai, H. Amano, and I. Akasaki, Jpn. J. Appl. Phys, Part 2 36, L177 (1997).

    Article  CAS  Google Scholar 

  20. Y. Narukawa, Y. Kawakami, S. Fujita, and S. Fujita, Phys. Rev. B 55, R1938 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liliental-Weber, Z., Benamara, M., Washburn, J. et al. Relaxation of InGaN thin layers observed by X-ray and transmission electron microscopy studies. J. Electron. Mater. 30, 439–444 (2001). https://doi.org/10.1007/s11664-001-0056-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-001-0056-5

Key words

Navigation