Skip to main content
Log in

Correlation of Cooling Rate, Microstructure and Hardness of S34MnV Steel

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A study of the hardenability, the microstructure and the phase transformations as a function of the cooling rate, of a marine crankshaft S34MnV steel has been performed using a Jominy end-quench test and dilatometry tests. The cooling rate has a distinct influence on the hardness and microstructure characteristics. As the cooling rate decreases, the hardness drops from HRC53 at the quenched end to HRC22 at the top end of the Jominy bar. The corresponding microstructures change from hard martensite to bainite, then soft pearlite and ferrite. The critical temperatures Ac1, 740 °C and Ac3, 830 °C were determined, and a continuous cooling transformation diagram was constructed from the dilatometric data. The important role of cooling rate on final hardness, phase transformation and microstructures are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chen ZY and Nash P (2018) Steel Res. Int. 89(3), 1700321

    Article  Google Scholar 

  2. M.Y. Sun, B. Xu, D.Z. Li and Y.Y. Li: AIP Conf. Proc., 2013, vol. 1532, pp. 898-904.

    Article  Google Scholar 

  3. A. Milenin, T. Rec, W. Walczyk and M. Pietrzyk: Procedia Eng., 2014, vol. 81, pp.498-503.

    Article  Google Scholar 

  4. M. Çakir and A. Özsoy: Mater. Des., 2011, vol. 32, pp. 3099-3105.

    Article  Google Scholar 

  5. F.A. Franco, M.F.R. González, M.F. de Campos, and L.R. Padovese: J Nondestruct Eval, 2013, vol. 32, pp. 93-103.

    Article  Google Scholar 

  6. S. Hadi, E. Widiyono, W. Winarto and D.Z. Noor: J. Technol. Sci. (The Journal for Technology and Science), 2013, vol. 24, pp. 7-12.

    Google Scholar 

  7. D.O. Fernandino, J.M. Massone and R.E. Boeri: J. Mater. Process. Technol., 2013. vol. 213, pp. 1801-1809.

    Article  Google Scholar 

  8. A.B. Dobuzhskaya, G. A. Galitsyn, N. V. Mukhranov, M. S. Fomichev, E. V. Belokurova and S. V.Belikov: Steel Transl., 2015, vol. 45, pp. 894-899.

    Article  Google Scholar 

  9. Zheng YX, Wang FM, Li CR, He YT (2017) Mater. Sci. Eng., A 701, pp. 45-55.

    Article  Google Scholar 

  10. K.N. Campo, D.R. Andrade, V.C. Opini, M.G. Mello, E.S.N. Lopes and R. Caram: J. Alloys Compd., 2016, vol. 667, pp. 211-218.

    Article  Google Scholar 

  11. J. Lapin and K. Marek: J. Alloys Compd., 2018. vol.735, pp. 338-348.

    Article  Google Scholar 

  12. Y. Yin, B.H. Luo, H.B. Jing, Z.H. Bai and Y. Gao: Metall. Mater. Trans. B, 2018. vol. 49B, pp. 2241-2251.

    Article  Google Scholar 

  13. H.Y. Wu, Z.W. Huang, N. Zhou, J.G. Chen, P. Zhou and L. Jiang (2019) Mater. Sci. Eng., A, vol. 739, pp. 473-479.

    Article  Google Scholar 

  14. M. Gomez, L. Rancel, E. Escudero and S.F. Medina: J. Mater. Sci. Technol., 2014, vol. 30, pp. 511-516.

    Article  Google Scholar 

  15. Kawulok R, Schindler I, Kawulok P, Rusz S, Opěla P, Solowski Z, Čmiel KM (2015) Metalurgija, vol. 54, pp. 473–476.

    Google Scholar 

  16. H.P. Kang, B.J. Park, J.H. Jang, K.S. Jang and K.J. Lee: Met. Mater. Int., 2016, vol. 22, pp. 949-955.

    Article  Google Scholar 

  17. M.Y. Sun, S.P. Lu, S.J. Li, D.Z. Li and Y.Y. Li: Adv. Mater. Res., 2007, vol. 26-28, pp. 1037-1040.

    Article  Google Scholar 

  18. M. Kawuloková, B. Smetana, S. Zlá, A. Kalup, E. Mazancová, P. Váňová, P. Kawulok, J. Dobrovská and S. Rosypalová: J. Therm. Anal. Calorim., 2017, vol. 127, pp. 423-429.

    Article  Google Scholar 

  19. C.R.N. Nunura, C.A. dos Santos and J.A. Spim: Mater. Des., 2015, vol. 76, pp. 230-243.

    Article  Google Scholar 

  20. A. Çalik: Int. J. Phys. Sci., 2009, vol. 4, pp. 514-518.

    Google Scholar 

  21. Yazdi AZ, Sajjadi SA, Zebarjad SM (2008) J. Mater. Process. Technol. vol. 199, pp. 124-129.

    Article  Google Scholar 

  22. B. P. Smoljan: J. Mater. Process. Technol,. 2006, vol. 175, pp. 393-397.

    Article  Google Scholar 

  23. H. Kitahara, R. Ueji, N. Tsuji and Y. Minamino: Acta Mater., 2006, vol. 54, pp. 1279-1288.

    Article  Google Scholar 

  24. M. Kumar, N. Ross and I. Baumgartner: Mater. Sci. Forum, 2015, vol. 828-829, pp. 188-193.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Thermal Processing Technology Center (TPTC) of Illinois Institute of Technology for supporting this work, and thanks to Russ Janota, Yang Zhou, and Kathy Ho for their help in experimentation. This work was supported by Shanghai Heavy Castings and Forgings Collaborative Innovation Center (Grant Numbers ZF1225); Innovation Program of Shanghai Municipal Education Commission (Grant Numbers 12YZ183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiying Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 10, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Nash, P. & Zhang, Y. Correlation of Cooling Rate, Microstructure and Hardness of S34MnV Steel. Metall Mater Trans B 50, 1718–1728 (2019). https://doi.org/10.1007/s11663-019-01621-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01621-0

Navigation