Skip to main content
Log in

Optimization of Melt Treatment for Austenitic Steel Grain Refinement

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Refinement of the as-cast grain structure of austenitic steels requires the presence of active solid nuclei during solidification. These nuclei can be formed in situ in the liquid alloy by promoting reactions between transition metals (Ti, Zr, Nb, and Hf) and metalloid elements (C, S, O, and N) dissolved in the melt. Using thermodynamic simulations, experiments were designed to evaluate the effectiveness of a predicted sequence of reactions targeted to form precipitates that could act as active nuclei for grain refinement in austenitic steel castings. Melt additions performed to promote the sequential precipitation of titanium nitride (TiN) onto previously formed spinel (Al2MgO4) inclusions in the melt resulted in a significant refinement of the as-cast grain structure in heavy section Cr-Ni-Mo stainless steel castings. A refined as-cast structure consisting of an inner fine-equiaxed grain structure and outer columnar dendrite zone structure of limited length was achieved in experimental castings. The sequential of precipitation of TiN onto Al2MgO4 was confirmed using automated SEM/EDX and TEM analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Y. Shan, X. Luo, X. Hu, and S. Liu: Mater. Sci. Technol., 2011, vol. 27, no. 4, pp. 352–58.

    Article  Google Scholar 

  2. J.K. Brimacombe: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1899–912.

    Article  Google Scholar 

  3. X. Wu, Y. Yang, J. Zhang, G. Jia, and Z. Hu: J. Mater. Eng. Perform., 1999, vol. 8, no. 5, pp. 525–30.

    Article  Google Scholar 

  4. J.Z. Lu: Acta Mater., 2010, vol. 58, pp. 5354–62.

    Article  Google Scholar 

  5. B. Abbasi-Khazaei: J. Mater. Sci. Technol., 2012, vol. 28, no. 10, pp. 946–50.

    Article  Google Scholar 

  6. Ø. Grong: ISIJ Int., 2006, vol. 46, no. 6, pp. 824–31.

    Article  Google Scholar 

  7. W.Kurz and D. J. Fisher: Fundamentals of Solidification, Trans Tech Publications, Adermannsdorf, 1986, p. 27.

    Google Scholar 

  8. A. L. Greer: Philos. Trans. R. Soc. Lond. A, 2003, vol. 361, pp. 479–95.

    Article  Google Scholar 

  9. M. Qian: Acta Mater., 2007, vol. 55, pp. 943–53.

    Article  Google Scholar 

  10. E. S. Dahle: A Master Thesis at Norwegian University of Science and Technology, 2011.

  11. R. Tuttle, K. Song: IJMC, 2015, vol. 9, pp. 23–25.

    Google Scholar 

  12. R. Tuttle: J. Mater. Eng. Perform, 2013, vol. 22, pp. 145–50.

    Article  Google Scholar 

  13. R. Tuttle: IJMC, 2012, Spring, pp. 51–63.

  14. R. Tuttle: IJMC, 2016, vol. 10, pp. 21–31.

    Google Scholar 

  15. M. Kiviö: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 1194–204.

    Article  Google Scholar 

  16. M. Kiviö: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 233–40.

    Article  Google Scholar 

  17. M. Zielińska, K. Kubiak, J. Sieniawski: J. Achiev. Mater. Manuf. Eng., 2009, vol. 35, no. 1, pp. 55–62.

    Google Scholar 

  18. D.W. Kim: J. Nucl. Mater., 2012, vol. 420, pp. 473–78.

    Article  Google Scholar 

  19. C. Wang: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1616–20.

    Article  Google Scholar 

  20. J.S. Park, J.H. Park: Steel Res. Int., 2014, 85(8), pp. 1303–09.

    Google Scholar 

  21. H. Suito: ISIJ Int., 2001, vol. 41, no. 7, pp. 748–56.

    Article  Google Scholar 

  22. K. Isobe: ISIJ Int., 2010, vol. 50, no. 12, pp. 1972–80.

    Article  Google Scholar 

  23. K. Kimura: ISIJ Int., 2013, vol. 53, no. 12, pp. 2167–75.

    Article  Google Scholar 

  24. J.S. Park, C. Lee, and J.H. Park: Metall. Mater. Trans. B, 2012, vol. 34B, pp. 1550–64.

    Article  Google Scholar 

  25. B.L. Bramfitt: Metall. Trans., 1970, vol. 1, no. 7, pp. 1987–95.

    Article  Google Scholar 

  26. S.N. Lekakh, N.I. Medvedeva: Comput. Mater. Sci., 2015, vol. 106, pp. 149–54.

    Article  Google Scholar 

  27. Factsage thermodynamic software, GTT-Technologies, Aachen. www.gtt-technologies.de.

  28. N. Philips: A Master Thesis at Iowa State University, 2006.

  29. Casting simulation software Magma®, Aachen. www.magmasoft.com.

  30. M. Harris, O. Adaba, S. Lekakh, R. O’Malley, V. Richards: AISTech Proceedings, 2015, pp. 3315–25.

  31. G.N. Heintze: Welding Research Supplement, March 1986, pp. 71–82.

  32. A. Ostrowski: Scand. J. Metall., 1979, vol. 8, pp. 153–60.

    Google Scholar 

Download references

Acknowledgments

This study is supported by Kent Peaslee Steel Manufacturing Research Center, and the authors gradually thank to the members of industrial advisers committee of this project for material supply, suggestions in mold design, and regular results discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon N. Lekakh.

Additional information

Manuscript submitted August 17, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lekakh, S.N., Ge, J., Richards, V. et al. Optimization of Melt Treatment for Austenitic Steel Grain Refinement. Metall Mater Trans B 48, 406–419 (2017). https://doi.org/10.1007/s11663-016-0832-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0832-5

Keywords

Navigation