Skip to main content
Log in

A Thermal Simulation Method for Solidification Process of Steel Slab in Continuous Casting

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Eighty years after the invention of continuous cast of steels, reproducibility from few mm3 samples in the laboratory to m3 product in plants is still a challenge. We have engineered a thermal simulation method to simulate the continuous casting process. The temperature gradient (G L ) and dendritic growth rate (v) of the slab were reproduced by controlling temperature and cooling intensity at hot and chill end, respectively, in our simulation samples. To verify that our samples can simulate the cast slab in continuous casting process, the heat transfer, solidification structure, and macrosegregation of the simulating sample were compared to those of a much larger continuous casting slab. The morphology of solid/liquid interface, solidified shell thickness, and dendritic growth rate were also investigated by in situ quenching the solidifying sample. Shell thickness (δ) determined by our quenching experiment was related to solidification time (τ) by equation: δ = 4.27 × τ 0.38. The results indicated that our method closely simulated the solidification process of continuous casting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Chalmers: principles of solidification, John Wiley & Sons, Inc., New York, 1964.

    Google Scholar 

  2. K. A. Jackson, J. D. Hunt, D. R. Uhlmann and T. P. Seward: Trans. Metall. Soc. AIME, 1966, vol. 236, 149-158.

    Google Scholar 

  3. B. G. Thomas and F. M. Najjar: Appl. Math. Model., 1991, vol. 15(5), pp. 226-243.

    Article  Google Scholar 

  4. B. A. Lewis, B. Barber and N. J. Hill: Appl. Math. Model., 1983, vol. 7(4), pp. 274-277.

    Article  Google Scholar 

  5. M Alizadeh, A JenabaliJahromi, O Abouali (2008) Comput. Mater. Sci. 44(2):807-812

    Article  Google Scholar 

  6. N. Tiedje and E. W. Langer: Scand. J. Metall., 1992, vol. 21(5), pp. 211-217.

    Google Scholar 

  7. K Jabri, E Godoy, D Dumur, A Mouchette, B Bèle (2011) J. Process Control 21(2):271-278.

    Article  Google Scholar 

  8. H. F. Shen and C. Beckermann: Metall. Mater. Trans., 2002, vol. 33B(1), pp. 69-78.

    Article  Google Scholar 

  9. J. Mahmoudi and M. Vynnycky: Scand. J. Metall., 2001, vol. 30(1),pp. 21-29.

    Article  Google Scholar 

  10. N. Limodin, L. Salvo, E. Boller, M. Su E Ry, M. Felberbaum, S. Gailli E Gue and K. Madi: Acta Mater., 2009, vol. 57(7), pp. 2300-2310.

    Article  Google Scholar 

  11. R. H. Mathiesen and L. Arnberg: Acta Mater., 2005, vol. 53(4), pp. 947-956.

    Article  Google Scholar 

  12. W Huang, L Wang (2012) Sci. China Technol. Sci. 55(2):377-386.

    Article  Google Scholar 

  13. H. Harada, T. Toh, T. Ishii, K. Kaneko and E. Takeuchi: ISIJ Int., 2001, vol. 41(10), pp. 1236-1244.

    Article  Google Scholar 

  14. T. Toh, H. Hasegawa and H. Harada: ISIJ Int., 2001, vol. 41(10), pp. 1245-1251.

    Article  Google Scholar 

  15. NC Machingawuta, S Bagha, P Grieveson (1991) Steelmaking Conference Proceedings. ISS-AIME, Warrendale, vol. 74, pp. 163-70

    Google Scholar 

  16. A. Badri, T.T. Natarajan, C.C. Snyder, K.D. Powers, F.J. Mannion, M. Byrne, and A.W. Cramb: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 373–83.

    Article  Google Scholar 

  17. H. Zhang, W. Wang, F. Ma, and L. Zhou: Metall. Mater. Trans. B, 2015, vol. 46(5), pp. 2361-2373.

    Article  Google Scholar 

  18. W. Chen, Y. Z. Zhang, C. J. Zhang, L. G. Zhu, W. G. Lu, B. X. Wang and J. H. Ma: Mater. Sci. Eng. A, 2009, vol. 499(1–2), pp. 58-63.

    Article  Google Scholar 

  19. S. Louhenkilpi, M. Mäkinen, S. Vapalahti, T. Räisänen and J. Laine: Mater. Sci. Eng. A, 2005, vol. 413–414(0), pp. 135-138.

    Article  Google Scholar 

  20. A. Ramirez, F. Carrillo, J. L. Gonzalez and S. Lopez: Mater. Sci. Eng. A, 2006, vol. 421(1–2), pp. 208-216.

    Article  Google Scholar 

  21. P. D. Lee, P. E. Ramirez-Lopez, K. C. Mills and B. Santillana: Ironmak. Steelmak., 2012, vol. 39(4), pp. 244-253.

    Article  Google Scholar 

  22. X. Chen, Q. Sun, L. Ao, H. Zhong, H. Zheng, Z. Li and Q. Zhai: TMS2011, Minerals, Metals and Materials Society, San Diego, CA, United states, 2011, pp. 577-584.

    Google Scholar 

  23. X. Liu and M. Zhu: ISIJ Int., 2006, vol. 46(11), pp. 1652-1659.

    Article  Google Scholar 

  24. J. E. Lait, J. K. Brimacombe and F. Weinberg: Ironmak. Steelmak., 1974, vol. 1(2), pp. 90-97.

    Google Scholar 

  25. YW Chan (1989) Adv. Eng. Softw. 11(3): 128-135.

    Article  Google Scholar 

  26. S. K. Choudhary, D. Mazumdar and A. Ghosh: ISIJ Int., 1993, vol. 33(7), pp. 764-774.

    Article  Google Scholar 

  27. K. Kasperski (2004) MS&T 2004. AIST, New Orleans, pp. 203-209.

    Google Scholar 

  28. Z. Malinowski, T. Telejko and B. Hadala: Arch. Metall. Mater., 2012, vol. 57(1), pp. 325-331.

    Google Scholar 

  29. H. M. Al-Ahamdi, S. C. Yao, K. Kasperski and K. Tanner: 85th Steelmaking Conference proceedings, ISS-AIME, Nashville, TN, United states, 2002, pp. 365-374.

    Google Scholar 

  30. M. C. Flemings: Solidification processing, p. 234, McGraw- Hill, New York, 1974.

    Google Scholar 

  31. A. E. Ares, L. M. Gassa, S. F. Gueijman and C. E. Schvezov: J. Cryst. Growth, 2008, vol. 310(7-9), pp. 1355-1361.

    Article  Google Scholar 

  32. M. Hanao, M. Kawamoto, A. Yamanaka. ISIJ Int., 2009, vol. 49(3), pp. 365-374.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial supports from the National Natural Science Foundation of China (Nos. 51227803, 51504148) and National Basic Research Program of China (Granted No. 2011CB012902). A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by the State of Florida and the National Science Foundation’s Division of Materials Research through DMR-0654118.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qijie Zhai.

Additional information

Manuscript submitted September 20, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, H., Chen, X., Han, Q. et al. A Thermal Simulation Method for Solidification Process of Steel Slab in Continuous Casting. Metall Mater Trans B 47, 2963–2970 (2016). https://doi.org/10.1007/s11663-016-0660-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0660-7

Keywords

Navigation