Skip to main content
Log in

Effects of Residual Elements Arsenic, Antimony, and Tin on Surface Hot Shortness

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Scrap-based electric arc furnace (EAF) steelmaking is limited by a surface cracking problem in the recycled steel products, which is known as surface hot shortness. This problem originates from the excessive amount of copper (Cu) in the steel scrap, which enriches during the oxidation of iron (Fe) and consequently melts and penetrates into the austenite grain boundaries. In this article, the effects of arsenic (As), antimony (Sb), and tin (Sn) on surface hot shortness were investigated. A series of Fe-0.3 wt pct Cu-x wt pct (As, Sb, or Sn) alloys with x content ranging from 0.06 to 0.10 wt pct was oxidized in air at 1423 K (1150 °C) for 60, 300, and 600 seconds inside the chamber of a thermogravimety analyzer (TGA) where heat is supplied through infrared radiation. Scanning electron microscopy (SEM) investigations show that (1) the presence of Sb and Sn results in severe grain boundary cracking, whereas the presence of As does not, (2) open cracks with Fe oxides were found beneath the oxide/metal interface in the Sb and Sn alloys, and (3) the oxide/metal interfaces for all As, Sb, and Sn alloys are planar. Penetration experiments of pure Cu and Cu-30 wt pct Sn liquid were also conducted in the chamber of a hot-stage confocal laser scanning microscopy (CLSM) in nonoxidizing atmosphere: (1) on the Fe-35 wt pct manganese (Mn) alloys to study the correlation between cracking and grain boundary characters, and (2) on the pure Fe substrates to exclude the bulk segregation effects of Sn on grain boundary cracking. It was found that grain boundary cracking rarely took place on low-energy grain boundaries. The results also suggest that the bulk segregation of Sn in the substrate is not necessary to promote significant grain boundary cracking, and as long as the liquid phase contains Sn, it will be highly embrittling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J.A.T. Jones, B. Bowman, and P.A. Lefrank: in The Making, Shaping, and Treating of Steel, Steelmaking and Refining, R.J. Fruehan, ed., AISE Steel Foundation, Pittsburgh, PA, 1998, pp. 525–660.

  2. U.S. Geological Survey, Mineral Commodity Studies, 2010, U.S. Department of Interior-U.S. Geological Survey, Washington, DC, p. 80.

  3. US Department of Energy Office of Industrial Technologies, Energy and Environmental Profile of the U.S. Iron and Steel Industry. 2000, Energetics Inc., Columbia, MD, pp. 10–16.

  4. A. Nicholson and J.D. Murray: J. Iron Steel Inst., 1965, vol. 203, pp. 1007-18.

    CAS  Google Scholar 

  5. D.A. Melford: Philos. Trans. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 1980, vol. 295, no. 1413, pp. 89-103.

    Article  CAS  Google Scholar 

  6. J.K.S. Tee and D.J. Fray: Ironmaking Steelmaking, 2006, vol. 33, no. 1, pp. 19-23.

    Article  CAS  Google Scholar 

  7. B. Yalamanchili, P.M. Power, and J.B. Nelson: Wire J. Int., 1999, vol. 32, no. 5, pp. 100-06.

    CAS  Google Scholar 

  8. K. Noro, M. Takeuchi, and Y. Mizukami: ISIJ Int., 1997, vol. 37, no. 3, pp. 198-206.

    Article  CAS  Google Scholar 

  9. W.J.M. Salter: J. Iron Steel Inst., 1966, vol. 204, pp. 478-88.

    Google Scholar 

  10. T.B. Massalski: in Binary Alloy Phase Diagram, T.B. Massalski and H. Okamoto, eds., vol. 2, ASM International, Materials Park, OH, 1990.

  11. B.A. Webler, L. Yin, and S. Seetharaman: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 725-37.

    Article  CAS  Google Scholar 

  12. L. Yin, S. Balaji, and S. Sridhar. Metall. Mater. Trans. B, 2010, vol. 41B, pp. 598-611.

    Article  CAS  Google Scholar 

  13. T. Fukagawa and H. Fujikawa: Oxid. Met., 1999, vol. 52, nos. 3-4, pp. 177-94.

    Article  CAS  Google Scholar 

  14. L.Yin and S. Sridhar: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 1095-1107.

    Article  CAS  Google Scholar 

  15. B.J. Schulz and C.J. McMahon: American Society for Testing and Materials Special Technical Publications, 1972, vol. 499, pp. 104-35.

    Google Scholar 

  16. R.H. Jones, D.R. Baer, L.A. Charlot, and M.T. Thomas: Metall. Trans. A, 1988, vol. 19A, pp. 2005-11.

    CAS  Google Scholar 

  17. M.P. Seah and E.D. Hondros: P. Roy. Soc. Lond. A Mat., 1973, vol. 335 (1601), pp. 191–212.

  18. C.J. McMahon: American Society for Testing and Materials Special Technical Publications, vol. 407, ASTM, West Conshohocken, PA, 1968, pp. 127–67.

  19. M.P. Seah: Acta Metall., 1980, vol. 28, no. 7, pp. 955-62.

    Article  CAS  Google Scholar 

  20. Materials Preparation Center: Ames Laboratory, US Doe Basic Energy Sciences, www.mpc.ameslab.gov .

  21. K. Sachs and C.W. Tuck: Proc. Conf. Reheating for Hot Working, Iron and Steel Institute, Pittsburgh, PA, 1968.

  22. H. Abuluwefa, R.I.L. Guthrie, and F. Ajersch: Oxid. Met., 1996, vol. 46, no. 5-6, pp. 423-40.

    Article  CAS  Google Scholar 

  23. A.P. Sutton and R.W. Balluffi: Acta Metall., 1987, vol. 35, no. 9, pp. 2177-201.

    Article  CAS  Google Scholar 

  24. M. Takashima, P. Wynblatt, and B.L. Adams: Interface Sci., 2000, vol. 8, no. 4, pp. 351-61.

    Article  CAS  Google Scholar 

  25. H. Ohtani, H. Suda, and K. Ishida: ISIJ Int., 1997, vol. 37, no. 3, pp. 207-16.

    Article  CAS  Google Scholar 

  26. D.G. Mendoza, M. Hino, and K. Itagaki: J. Min. Mater. Process. Inst. Japan, 2002, vol. 118, pp. 197-201.

    CAS  Google Scholar 

  27. C.J. Smithells: in Smithells Metals Reference Book, 8th ed., W.F. Gale and T.C. Totemeier, eds., Elsevier Butterworth-Heinemann, Atlanta, GA, 2004, pp. 13–22.

  28. A. Lisak and K. Fitzner: J. Phase Equil., 1994, vol. 15, no. 2, pp. 151-54.

    Article  Google Scholar 

  29. K. Itagaki, D.G. Mendoza, L. Voisin, and M. Hino: Monatsh. Chem., 2005, vol. 136, pp. 1847-52.

    Article  CAS  Google Scholar 

  30. D.E. Coates and J.S. Kirkaldy: J. Cryst. Growth, 1968, vol. 3, no. 4, pp. 549-54.

    Article  Google Scholar 

  31. N. Birks, G.H. Meier, and F.S. Pettit: High-Temperature Oxidation of Metals, 2nd ed. Cambridge University Press, New York, NY, 2006, pp. 64-67.

    Google Scholar 

  32. S. Pötschke and A.R. Buchner: Steel Res. Int., 2006, vol. 77, no. 6, pp. 416-22.

    Google Scholar 

  33. U. Choudary, J. Serkin, and G. Belton: Metall. Trans. B, 1975, vol. 6B, pp. 399-403.

    Article  CAS  Google Scholar 

  34. M. Arita, M. Ohyama, K.S. Goto, and M. Someno: Z. Metallkd., 1981, vol. 72, no. 4, pp. 244-50.

    CAS  Google Scholar 

  35. M. Ohno and K. Yoh: J. Cryst. Growth, 2008, vol. 310, no. 11, pp. 2751-59.

    Article  CAS  Google Scholar 

  36. B.Y. Pei, B. Björkman, B. Sundman, and B. Jansson: CALPHAD, 1995, vol. 19, no. 1, pp. 1-15.

    Article  CAS  Google Scholar 

  37. M. Arita, M. Tanaka, K.S. Goto, and M. Someno: Metall. Trans. A, 1981, vol. 12A, pp. 497-504.

    Google Scholar 

  38. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley: Selected Values of the Thermodynamic Properties of Elements and Selected Values of the Thermodynamic Properties of Binary Alloys, ASM, Materials Park, OH, 1973.

  39. M. Guttmann: Philos. Trans. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 1980, vol. 295, no. 1413, pp. 169-96.

    Article  CAS  Google Scholar 

  40. P. Lemblé, A. Pineau, J.L. Castagne, P. Dumoulin, and M. Guttmann: Met. Sci., 1979, vol. 13, pp. 496-502.

    Article  Google Scholar 

  41. N. Imai, N. Komatsubara, and K. Kunishige: ISIJ Int., 1997, vol. 37, no. 3, pp. 217-23.

    Article  CAS  Google Scholar 

  42. M.P. Seah: Surf. Sci., 1975, vol. 53, pp. 168-212.

    Article  CAS  Google Scholar 

  43. N. Imai, N. Komatsubara, and K. Kunishige: ISIJ Int., 1997, vol. 37, no. 3, pp. 224-31.

    Article  CAS  Google Scholar 

  44. B.A. Webler and S. Sridhar: ISIJ Int., 2007, vol. 47, no. 9, pp. 1245-54.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Financial support from the Center for Iron and Steelmaking Research (CISR) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Yin.

Additional information

Manuscript submitted February 16, 2011

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, L., Sridhar, S. Effects of Residual Elements Arsenic, Antimony, and Tin on Surface Hot Shortness. Metall Mater Trans B 42, 1031–1043 (2011). https://doi.org/10.1007/s11663-011-9528-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-011-9528-z

Keywords

Navigation