Skip to main content
Log in

Effects of Small Additions of Tin on High-Temperature Oxidation of Fe-Cu-Sn Alloys for Surface Hot Shortness

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Steel produced in an electric arc furnace contains a high amount of copper (Cu) that causes a surface-cracking phenomenon called surface hot shortness. It is known that tin (Sn) can exacerbate the hot shortness problem. A series of iron (Fe)-0.3 wt pct Cu-x wt pct Sn alloys with an Sn content ranging from 0.03 to 0.15 wt pct was oxidized in air at 1423 K (1150 °C) for 60 seconds, 300 seconds, and 600 seconds using thermogravimetry. A numerical model developed in a previous article was applied to predict the liquid–γFe interface concentrations and interface morphology in the Fe-Cu-Sn ternary system. Scanning electron microscopy investigations show that (1) The interface between the oxide and the metal is planar as predicted by the numerical model, (2) Sn leads to severe Cu-rich liquid penetration and cracking along the grain boundaries, and (3) open cracks with Fe oxides were found beneath the oxide–metal interface. The focused ion beam serial-sectioning technique was used to reveal a three-dimensional structure of cracks in the grain boundary containing Cu-rich liquid and Fe oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Energetics Inc.: DOE/EE-0229, U.S. Department of Energy Office of Industrial Technologies, Washington, DC, 2000, pp. 10–16.

  2. A. Nicholson and J.D. Murray: J. Iron Steel Inst., 1965, vol. 203, pp. 1007–18.

    CAS  Google Scholar 

  3. D.A. Melford: Phil. Trans. R. Soc. Lond., 1980, vol. 295, no. 1413, pp. 89–103.

    Article  CAS  ADS  Google Scholar 

  4. J.K.S. Tee and D.J. Fray: Ironmaking Steelmaking, 2006, vol. 33, no. 1, pp. 19–23.

    Article  CAS  Google Scholar 

  5. R.Y. Chen and W.Y.D. Yuen: ISIJ Int., 2005, vol. 45, no. 6, pp. 807–16.

    Article  CAS  Google Scholar 

  6. D.S. O’Neill: Ph.D. Dissertation, The University of New South Wales, Sydney, Australia, 2002.

  7. B. Yalamanchili, P.M. Power, and J.B. Nelson: Wire J. Int., 1999, vol. 32, no. 5, pp. 100–06.

    CAS  Google Scholar 

  8. K. Noro, M. Takeuchi, and Y. Mizukami: ISIJ Int., 1997, vol. 37, no. 3, pp. 198–206.

    Article  CAS  Google Scholar 

  9. W.J.M. Salter: J. Iron Steel Inst., 1966, vol. 204, pp. 478–88.

    Google Scholar 

  10. T. Fukagawa and H. Fujikawa: Oxid. Met., 1999, vol. 52, nos. 3–4, pp. 177–94.

    Article  CAS  Google Scholar 

  11. B.A. Webler, L. Yin, and S. Seetharaman: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 725–37.

    Article  CAS  ADS  Google Scholar 

  12. D.A. Melford: J. Iron Steel Inst., 1962, vol. 200, pp. 290–99.

    CAS  Google Scholar 

  13. N. Imai, N. Komatsubara, and K. Kunishige: ISIJ Int., 1997, vol. 37, no. 3, pp. 217–23.

    Article  CAS  Google Scholar 

  14. G.G. Foster and J.K. Gilchrist: Metallurgia, 1952, vol. 225, p. 225.

    Google Scholar 

  15. W.J.M. Salter: J. Iron Steel Inst., 1969, vol. 207, pp. 1619–23.

    CAS  Google Scholar 

  16. Y. Zou and E.W. Langer: Mater. Sci. Eng. A, 1989, vol. 110, pp. 203–08.

    Article  Google Scholar 

  17. L. Yin, S. Balaji, and S. Sridhar: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 598–611.

    Article  CAS  ADS  Google Scholar 

  18. N. Birks, G.H. Meier, and F.S. Pettit: High-Temperature Oxidation of Metals, 2nd ed., Cambridge University Press, Cambridge, UK, 2006.

    Google Scholar 

  19. B.A. Webler and S. Sridhar: Oxid. Met., 2009, vol. 71, nos. 1–2, pp. 21–42.

    Article  CAS  Google Scholar 

  20. Materials Preparation Center, Ames Laboratory: U.S. Department of Energy Basic Energy Sciences, www.mpc.ameslab.gov.

  21. K. Sachs and C.W. Tuck: Proc. Conf. Reheating for Hot Working, Iron and Steel Institute, Washington, DC, 1968.

  22. H. Abuluwefa, R.I.L. Guthrie, and F. Ajersch: Oxid. Met., 1996, vol. 46, nos. 5–6, pp. 423–40.

    Article  CAS  Google Scholar 

  23. W.S. Rasband: ImageJ, http://rsb.info.nih.gov/ij/, 1997.

  24. Amiral: Version 3.1, Konrad-Zuse-Zentrum für Informationstechnik Berlin and Indeed, Visual Concepts GmbH, Berlin, Germany, 2003.

  25. J. Miettinen: CALPHAD, 2008, vol. 32, no. 3, pp. 500–05.

    Article  CAS  Google Scholar 

  26. Thermal-Calc Software AB: Version Q on WinNT, Stockholm, Sweden, 2004.

  27. S. Pötschke and A.R. Buchner: Steel Res. Int., 2006, vol. 77, no. 6, pp. 416–22.

    Google Scholar 

  28. M.M.G. Alemany, L.J. Gallego, L.E. Gonzalez, and D.J. Gonzalez: J. Chem. Phys., 2000, vol. 113, no. 22, pp. 10410–11.

    Article  CAS  ADS  Google Scholar 

  29. W.K. Chen and N.L. Peterson: J. Phys. Chem. Solids, 1975, vol. 36, no. 10, pp. 1097–103.

    Article  ADS  Google Scholar 

  30. C.J. Smithells: in Smithells Metals Reference Book, 8th ed., W.F. Gale and T.C. Totemeier, eds., Elsevier Butterworth-Heinemann, Oxford, UK, 2004, pp. 13–22.

    Google Scholar 

  31. Y. Kondo: ISIJ Int., 2004, vol. 44, no. 9, pp. 1576–80.

    Article  CAS  Google Scholar 

  32. B.A. Webler and S. Sridhar: ISIJ Int., 2008, vol. 48, no. 10, pp. 1345–53.

    Article  CAS  Google Scholar 

  33. Comsol AB: FEMLAB Version 3.2, Reference manual, Stockholm, Sweden, 2005.

  34. Matlab: MATLAB 7.0.4 Release 14, The Mathworks Inc., Natick, MA, 2005.

  35. D.E. Coates and J.S. Kirkaldy: J. Cryst. Growth, 1968, vol. 3, no. 4, pp. 549–54.

    Article  ADS  Google Scholar 

  36. R.Y. Chen and W.Y.D. Yuen: Oxid. Met., 2003, vol. 59, nos. 5–6, pp. 433–68.

    Article  CAS  Google Scholar 

  37. L. Himmel, R.F. Mehl, and C.E. Birchenall: J. Met., 1953, vol. 5, no. 6, pp. 827–43.

    CAS  Google Scholar 

  38. P. Wynblatt and M. Takashima: Interface Sci., 2001, vol. 9, nos. 3–4, pp. 265–73.

    Article  CAS  Google Scholar 

  39. M. Hatano, K. Kunishige, and Y. Komizo: Tetsu to Hagane, 2002, vol. 88, no. 3, pp. 142–47.

    CAS  Google Scholar 

  40. E.E. Glickman and M. Nathan: J. Appl. Phys., 1999, vol. 85, no. 6, pp. 3185–91.

    Article  CAS  ADS  Google Scholar 

  41. D. Chatain, E. Rabkin, J. Derenne, and J. Bernardini: Acta Mater., 2001, vol. 49, no. 7, pp. 1123–28.

    Article  CAS  Google Scholar 

  42. C.S. Smith: Trans. AIME, 1948, vol. 175, pp. 15–51.

    Google Scholar 

  43. E. Pereiro-Lopez, W. Ludwig, and D. Bellet: Acta Mater., 2004, vol. 52, no. 2, pp. 321–32.

    Article  CAS  Google Scholar 

  44. K. Wolski, V. Laporte, N. Marie, and M. Biscondi: Interface Sci., 2001, vol. 9, nos. 3–4, pp. 183–89.

    Article  CAS  Google Scholar 

  45. M.P. Seah and E.D. Hondros: Proc. R. Soc. Lond. A Math., 1973, vol. 335, no. 1601, pp. 191–212.

    Article  CAS  ADS  Google Scholar 

  46. J. Bernardini, P. Gas, E.D. Hondros, and M.P. Seah: Proc. R. Soc. Lond. A Math., 1982, vol. 379, no. 1776, pp. 159–78.

    Article  CAS  ADS  Google Scholar 

  47. V.A. Lazarev and V.M. Golikov: Phys. Met. Metallogr. USSR, 1971, vol. 31, no. 4, pp. 213–15.

    Google Scholar 

  48. H.S. Nam and D.J. Srolovitz: Phys. Rev. B, 2007, vol. 76 (18), pp. 184114-1–184114-14.

  49. W. Sigle, G. Richter, M. Ruhle, and S. Schmidt: Appl. Phys. Lett., 2006, vol. 89 (12), pp. 121911-1–121911-3.

  50. E.O. Kirkendall: Trans. AIME, 1942, vol. 147, pp. 104–09.

    Google Scholar 

  51. E. Rabkin, L. Klinger, T. Izyumova, and V.N. Semenov: Scripta Mater., 2000, vol. 42, no. 11, pp. 1031–37.

    Article  CAS  Google Scholar 

  52. H. Fredriksson, K. Hansson, and A. Olsson: Scand. J. Metall., 2001, vol. 30, no. 1, pp. 41–50.

    Article  CAS  Google Scholar 

  53. M. Arita, M. Tanaka, K.S. Goto, and M. Someno: Metall. Trans. A, 1981, vol. 12, no. 3, pp. 497–504.

    Article  CAS  Google Scholar 

  54. M. Arita, M. Ohyama, K.S. Goto, and M. Someno: Z. Metallkd., 1981, vol. 72, no. 4, pp. 244–50.

    CAS  Google Scholar 

  55. U. Choudary, J. Serkin, and G. Belton: Metall. Trans. B, 1975, vol. 6B, pp. 399–403.

    Article  CAS  ADS  Google Scholar 

  56. N. Imai, N. Komatsubara, and K. Kunishige: ISIJ Int., 1997, vol. 37, no. 3, pp. 224–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Center for Iron and Steelmaking Research (CISR) at Carnegie Mellon University is gratefully acknowledged. Discussions with Dr. Ron O’Malley at Nucor Steel and Professor Paul Wynblatt at Carnegie Mellon University are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seetharaman Sridhar.

Additional information

Manuscript submitted April 28, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, L., Sridhar, S. Effects of Small Additions of Tin on High-Temperature Oxidation of Fe-Cu-Sn Alloys for Surface Hot Shortness. Metall Mater Trans B 41, 1095–1107 (2010). https://doi.org/10.1007/s11663-010-9418-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-010-9418-9

Keywords

Navigation