Skip to main content
Log in

Effects of Small Additions of Copper and Copper + Nickel on the Oxidation Behavior of Iron

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This study was undertaken to investigate the effect of small amounts of copper and copper + nickel additions on the oxidation rate and oxide/metal interface microstructure of iron. Three iron-based alloys were compared: 0.3 wt pct copper, 0.3 wt pct copper-0.1 wt pct nickel, and 0.3 wt pct copper-0.05 wt pct nickel. Alloy samples were oxidized in air at 1150 °C for 60, 300, and 600 seconds. Pure iron oxidized for 300 seconds was used as a reference material. The parabolic oxidation rate for the iron-copper alloy did not differ from that of pure iron, but the parabolic rate for the nickel-containing alloys decreased by a factor of 2. The microstructure of the iron-copper alloy consisted of a thin, copper-rich layer at the oxide/metal interface. Both nickel-containing alloys had perturbed oxide/metal interfaces consisting of alternating solid/liquid regions. The application of ternary alloy interface stability theories show that the perturbed interfaces arise from unequal diffusivities in the solid γ-iron phase. It is suggested that this perturbed interface microstructure causes the observed decrease in oxidation rate, by limiting the iron supply to the oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. PHILIPS is a trademark of Philips Electronic Instruments Corp., Mahwah, NJ.

  2. ThermoCalc is a trademark of Thermo-Calc Software, Stockholm, Sweden.

  3. DICTRA is a trademark of Thermo-Calc Software, Stockholm, Sweden.

References

  1. J.A.T. Jones, B. Bowman, and P.A. Lefrank: The Making, Shaping, and Treating of Steel—Steelmaking and Refining Volume, 11th ed., The AISE Steel Foundation, Pittsburgh, PA, 1998, pp. 525–660

    Google Scholar 

  2. Energetics Inc.: Energy and Environmental Profile of the U.S. Iron and Steel Industry, DOE/EE-0229, United States Department of Energy, Office of Industrial Technologies, Washington, DC, 2000, pp. 10–26

  3. B. Sundman, B. Jansson, and J.-O. Andersson: CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 1985, vol. 9, pp. 153–90

    CAS  Google Scholar 

  4. Q. Chen, and Z. Jin: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 417–26

    Article  CAS  Google Scholar 

  5. S. Pötschke, and A.R. Büchner: Steel Res. Int., 2006, vol. 77, pp. 416–22

    Google Scholar 

  6. A. Nicholson, and J.D. Murray: J. Iron Steel Inst., 1965, vol. 203, pp. 1007–18

    CAS  Google Scholar 

  7. D.A. Melford: J. Iron Steel Inst., 1962, vol. 200, pp. 290–99

    CAS  Google Scholar 

  8. W.J.M. Salter: J. Iron Steel Inst., 1966, vol. 204, pp. 478–88

    Google Scholar 

  9. Handbook of Ternary Alloy Phase Diagrams, P. Villars, A. Prince, and H. Okamoto, eds., ASM INTERNATIONAL, Metals Park, OH, 1995, pp. 9350–91

  10. B. Yalamanchili, P. Power, and J. Nelson: Wire J. Int., 1999, vol. 32, pp. 143–55

    Google Scholar 

  11. S. Akamatsu, T. Senuma, Y. Takada, and M. Hasebe: Mater. Sci. Technol., 1999, vol. 15, pp. 1301–07

    CAS  Google Scholar 

  12. S.V. Divinski, F. Hisker, C. Herzig, R. Filipek, and M. Danielewski: Def. Diff. Forum, 2005, vols. 237–240, pp. 50–61

    Article  Google Scholar 

  13. G.L. Fisher: J. Iron Steel Inst., 1969, vol. 207, pp. 1010–16

    CAS  Google Scholar 

  14. T. Fukagawa, and H. Fujikawa: Oxid. Met., 1999, vol. 52, pp. 177–94

    Article  CAS  Google Scholar 

  15. R.Y. Chen, and W.Y.D. Yuen: ISIJ Int., 2005, vol. 45, pp. 807–16

    Article  CAS  Google Scholar 

  16. C. Wagner: J. Electrochem. Soc., 1956, vol. 103, pp. 571–80

    Article  CAS  Google Scholar 

  17. H.J. Grabke, V. Leroy, and H. Viefhaus: ISIJ Int., 1995, vol. 35, pp. 95–113

    Article  CAS  Google Scholar 

  18. B.A. Webler, and S. Sridhar: ISIJ Int., 2007, vol. 47, pp. 1245–54

    Article  CAS  Google Scholar 

  19. H. Abuluwefa, R.I.L. Guthrie, and F. Ajersch: Oxid. Met., 1996, vol. 46, pp. 423–40

    Article  CAS  Google Scholar 

  20. W. Rasband: ImageJ, Windows version 1.36, US National Institutes of Health, Bethesda, MD

  21. R.Y. Chen, and W.Y.D. Yuen: Oxid. Met., 2003, vol. 59, pp. 433–68

    Article  CAS  Google Scholar 

  22. K. Schwerdtfeger, and S. Zhou: Steel Res., 2003, vol. 74, pp. 538–48

    CAS  Google Scholar 

  23. V.G. Levich: Physicochemical Hydrodynamics, 1st ed., Prentice-Hall, Inc., Englewood Cliffs, NJ, 1962, p. 87.

    Google Scholar 

  24. L. Himmel, R.F. Mehl, and C.E. Birchenall: Trans. AIME, 1953, vol. 197, pp. 827–43

    Google Scholar 

  25. R.Y. Chen, and W.Y.D. Yuen: Oxid. Met., 2005, vol. 63, pp. 145–68

    Article  CAS  Google Scholar 

  26. R.T. Foley: J. Electrochem. Soc., 1962, vol. 109, pp. 1202–06

    Article  CAS  Google Scholar 

  27. F.J.J. Van Loo: Prog. Solid State Chem., 1990, vol. 20, pp. 47–99

    Article  Google Scholar 

  28. W.W. Mullins, and R.F. Sekerka: J. Appl. Phys., 1964, vol. 35, pp. 444–51

    Article  Google Scholar 

  29. D.P. Whittle, D.J. Young, and W.W. Smeltzer: J. Electrochem. Soc., 1976, vol. 123, pp. 1073–79

    Article  CAS  Google Scholar 

  30. D.E. Coates, and J.S. Kirkaldy: Trans. ASM, 1969, vol. 62, pp. 426–36

    CAS  Google Scholar 

  31. J.D. Harrison, and C. Wagner: Acta Metall., 1959, vol. 7, pp. 722–35

    Article  CAS  Google Scholar 

  32. J.B. Clark, and F.N. Rhines: Trans. ASM, 1959, vol. 51, pp. 199–221

    Google Scholar 

  33. J.S. Kirklady, and L.C. Brown: Can. Metall. Q., 1963, vol. 2, pp. 89–117

    Google Scholar 

  34. L.E. Wirtz, and M.A. Dayananda: Metall. Trans. A, 1977, vol. 8A, pp. 567–75

    CAS  Google Scholar 

  35. J.S. Kirkaldy and D.Y. Young: Diffusion in the Condensed State, 1st ed., The Institute of Metals, London, 1987, pp. 163 and 361–400

  36. D.E. Coates, and J.S. Kirkaldy: J. Cryst. Growth, 1968, vols. 3–4, pp. 549–54

    Article  Google Scholar 

  37. K. Majima, and H. Mitani: Trans. Jpn. Inst. Met., 1978, vol. 19, pp. 663–68

    CAS  Google Scholar 

  38. Y. Hanatate, K. Majima, and H. Mitani: Trans. Jpn. Inst. Met., 1978, vol. 19, pp. 669–73

    CAS  Google Scholar 

  39. K.J. Rönkä, A.A. Kodentsov, P.J.J. Van Loon, J.K. Kivilahti, and F.J.J. Van Loo: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2229–38

    Article  Google Scholar 

  40. A. Borgenstam, L. Höglund, J. Ågren, and A. Engström: J. Phase Equilib. Diffus., 2000, vol. 21, pp. 269–80

    CAS  Google Scholar 

  41. B.A. Webler, and S. Sridhar: Def. Diff. Forum, 2008, vols. 273–276, pp. 713–23

    Google Scholar 

  42. N. Imai, N. Komatsubara, and K. Kunishige: ISIJ Int., 1997, vol. 37, pp. 224–31

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Center for Iron and Steelmaking Research, Carnegie Mellon University (Pittsburgh, PA), and the Pennsylvania Infrastructure Technology Alliance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan Webler.

Additional information

Manuscript submitted August 8, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Webler, B., Yin, L. & Sridhar, S. Effects of Small Additions of Copper and Copper + Nickel on the Oxidation Behavior of Iron. Metall Mater Trans B 39, 725–737 (2008). https://doi.org/10.1007/s11663-008-9196-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-008-9196-9

Keywords

Navigation