Skip to main content
Log in

Dislocations, kink bands, and room-temperature plasticity of Ti3SiC2

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Transmission electron microscopy (TEM) of aligned, macrograined samples of Ti3SiC2, deformed at room temperature, shows that the deformed microstructure is characterized by a high density of perfect basal-plane dislocations with a Burgers vector of 1/3〈112 0〉. The dislocations are overwhelmingly arranged either in arrays, wherein the dislocations exist on identical slip planes, or in dislocations walls, wherein the same dislocations form a low-angle grain boundary normal to the basal planes. The arrays propagate across entire grains and are responsible for deformation by shear. The walls form as a result of the formation of kink bands. A dislocation-based model, that builds on earlier ideas proposed for kink-band formation in hexagonal metallic single crystals, is presented, which explains most of the microstructural features. The basic elements of the model are shear deformation by dislocation arrays, cavitation, creation of dislocation walls and kink boundaries, buckling, and delamination. The delaminations are not random, but successively bisect the delaminating sections. The delaminations and associated damage are contained by the kink boundaries. This containment of damage is believed to play a major role in endowing Ti3SiC2 and, by extension, related ternary carbides and nitrides with their damage-tolerant properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.W. Barsoum and T. El-Raghy: J. Am. Ceram. Soc., 1996, vol. 79, pp. 1953–56.

    Article  CAS  Google Scholar 

  2. M.W. Barsoum and T. El-Raghy: J. Mater. Synth. Proc., 1997, vol. 5, pp. 203–22.

    Google Scholar 

  3. M.W. Barsoum, T. El-Raghy, and L. Ogbuji: J. Electrochem. Soc., 1997, vol. 144, pp. 2508–16.

    Article  CAS  Google Scholar 

  4. T. El-Raghy, A. Zavaliangos, M.W. Barsoum, and S. Kalidinidi: J. Am. Ceram. Soc., 1997, vol. 80, pp. 513–16.

    Article  CAS  Google Scholar 

  5. M.W. Barsoum and T. El-Raghy: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 363–69.

    CAS  Google Scholar 

  6. L. Farber, M.W. Barsoum, A. Zavaliangos, T. El-Raghy, and I. Levin: J. Am. Ceram. Soc., 1998, vol. 81, pp. 1677–81.

    Article  CAS  Google Scholar 

  7. M.S. Patterson and L.E. Weiss: Geol. Soc. Am. Bull., 1996, vol. 77, pp. 343–73.

    Article  Google Scholar 

  8. O. Mugge: Neues Jarrb. Miner., 1898, vol. 1, p. 71.

    Google Scholar 

  9. N.C. Gay and L.E. Weiss: Tectonphysics, 1974, vol. 21, pp. 287–300.

    Article  Google Scholar 

  10. R.E. Robertson, M.G. Sporer, T.Y. Pan, and V.E. Mindroin: J. Mater. Sci., 1989, vol. 24, pp. 4106–13.

    Article  CAS  Google Scholar 

  11. R.E. Robertson: J. Polymer Sci., 1969, Part A-2, vol. 7, pp. 1315–28.

    CAS  Google Scholar 

  12. S. DeTeresa, R. Porter, and R. Farris: J. Mater. Sci., 1988, vol. 23, pp. 1886–94.

    Article  CAS  Google Scholar 

  13. D.A. Zaukelies: J. Appl. Phys., 1962, vol. 33, pp. 2797–2803

    Article  CAS  Google Scholar 

  14. G.E. Attenburrow and D.C. Bassett: J. Mater. Sci., 1979, vol. 14, pp. 2679–87.

    Article  CAS  Google Scholar 

  15. A. Keller and J.G. Rider: J. Mater. Sci., 1966, vol. 1, pp. 389–98.

    Article  CAS  Google Scholar 

  16. C.T. Keith and W.A. Cote, Jr.: Forest Prod. J., 1968, vol. 18, pp. 67–78.

    Google Scholar 

  17. H.M. Hathorne and E. Teghtsoonian: J. Mater. Sci., 1975, vol. 10, pp. 41–51.

    Article  Google Scholar 

  18. W.R. Jones and J.W. Johnson: Carbon, 1971, vol. 9, pp. 645–55.

    Article  CAS  Google Scholar 

  19. V. Gupta, K. Anand, and M. Kryska: Acta. Metall. Mater., 1994, vol. 42, pp. 781–95.

    Article  CAS  Google Scholar 

  20. C.W. Weaver and J.G. Williams: J. Mater. Sci., 1975, vol. 10, pp. 1323–33.

    Article  CAS  Google Scholar 

  21. A.A.S. Argon: Treatise Mater. Sci. Technol., 1972, vol. 1, p. 79.

    Google Scholar 

  22. E. Orowan: Nature, 1942, vol. 149, pp. 463–64.

    Google Scholar 

  23. J.B. Hess and C.S. Barrett: Trans. AIME, 1949, vol. 185, pp. 599–606.

    Google Scholar 

  24. S. Turan and K.M. Knowles: Phys. Status Solidi (a), 1995, vol. 150, pp. 227–37.

    Article  CAS  Google Scholar 

  25. H. Suematsu, T. Suzuki, T. Iseki, and T. Mori: J. Am. Cer. Soc., 1991, vol. 74, pp. 173–78.

    Article  CAS  Google Scholar 

  26. F.C. Frank and A.N. Stroh: Proc. Phys. Soc. B, 1952, vol. 65, pp. 811–21.

    Article  Google Scholar 

  27. A.N. Stroh: Proc. R. Soc. London A, 1954, vol. 223, pp. 404–14.

    Article  Google Scholar 

  28. E.G. Tapetado and M.H. Loretto: Phil. Mag., 1974, vol. 30, p. 515.

    CAS  Google Scholar 

  29. L. Farber, I. Levin, and M.W. Barsoum: Phil. Mag. Lett., 1999, vol. 79, pp. 163–70.

    Article  CAS  Google Scholar 

  30. T. El-Raghy, M.W. Barsoum, A. Zavaliangos, and S. Kalidindi: unpublished research.

  31. I.M. Low, S.K. Lee, B. Lawn, and M.W. Barsoum: J. Am. Ceram. Soc., 1998, vol. 81, 225–28.

    Article  CAS  Google Scholar 

  32. A.H. Cotrell: Dislocations and Plastic Flow in Crystals, Oxford University Press, Cambridge, United Kingdom, 1953.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barsoum, M.W., Farber, L. & El-Raghy, T. Dislocations, kink bands, and room-temperature plasticity of Ti3SiC2 . Metall Mater Trans A 30, 1727–1738 (1999). https://doi.org/10.1007/s11661-999-0172-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-999-0172-z

Keywords

Navigation