Skip to main content
Log in

Tension and compression testing of single-crystalline gamma Ti-55.5 pct Al

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

High-quality single crystals 6 to 10 mm in diameter of γ-Ti 55.5 pct Al have been grown using the optical float zone furnace technique. These crystals have been oriented and cut into microsample tension and compression specimens with a gage area of 250×250 µm and an effective gage length of 300 µm. These specimens have been deformed using a microsample testing machine which applies loads on the order of 50 N and measures strain using an interferometric strain/displacement gage. Stress-strain curves have been obtained for four different orientations and two temperatures and as a function of the sense of the applied load. Of special interest is the availability of tensile data for the resolved shear stress. Preliminary comparison of tension and compression microsample tests indicates that the tension-compression asymmetry is negligible at 500 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.C. Huang and J.C. Chestnutt: in Intermetallic Compounds, J.H. Westbrook and R.L. Fleischer, eds., John Wiley and Sons, New York, NY, 1994, vol. 2, pp. 73–90.

    Google Scholar 

  2. M. Yamaguchi, H. Inui, K. Kishida, M. Matsumuro, and Y. Shirai: Mater. Res. Soc., 1995, vol. 364, pp. 3–16.

    CAS  Google Scholar 

  3. Y.-W. Kim and D.M. Dimiduk: JOM, 1991, vol. 8, pp. 40–47.

    Google Scholar 

  4. G. Hug, A. Loiseau, and A. Lasalmonie: Phil Mag A, 1986, vol. 54A, pp. 47–65.

    Google Scholar 

  5. G. Hug, A. Loiseau, and P. Veyssire: Phil Mag A, 1988, vol. 57, pp. 499–523.

    CAS  Google Scholar 

  6. H.A. Lipsitt, D. Shechetman, and E. Schafrike: Metall. Trans. A, 1975, vol. 6A, pp. 1191–96.

    Google Scholar 

  7. R.E. Schafrick: Metall. Trans. A, 1977, vol. 8, pp. 1003–6.

    Google Scholar 

  8. D. Shechtman, M.J. Blackburn, and A. Lipsitt: Metall. Trans., 1974, vol. 5, pp. 1373–81.

    CAS  Google Scholar 

  9. V. Paidar, D.P. Pope, and V. Vitek: Acta. Metall., 1984, vol. 32, p. 435.

    Article  CAS  Google Scholar 

  10. T. Kawabata, T. Kanai, and O. Izumi: Acta Metall., 1985, vol. 33, pp. 1355–66.

    Article  CAS  Google Scholar 

  11. T. Kawabata, T. Abumiya, T. Kanai, and O. Izumi: Acta Metall. Mater., 1990, vol. 38, pp. 1381–1393.

    Article  CAS  Google Scholar 

  12. Z.X. Li and S.H. Whang: Mater. Sci. Eng., 1992, vol. A152, pp. 182–88.

    CAS  Google Scholar 

  13. M.A. Stucke, D.M. Dimiduk and P.M. Hazzledine: Mater. Res. Soc., 1993, vol. 288, pp. 471–76.

    CAS  Google Scholar 

  14. Z.-M. Wang, Z.X. Li, and S.H. Whang: Mater. Sci. Eng., 1995, vols. A192–A193, pp. 211–16.

    Google Scholar 

  15. M.A. Stucke, V.K. Vasudevan, and D.M. Dimiduk: Mater. Sci. Eng., 1995, vols. A192–A193, pp. 111–19.

    Google Scholar 

  16. R. Mahapatra, Y.T. Chou, A. Girshick, D.P. Pope, and V. Vitek: in Deformation and Fracture of Ordered Intermetallic Materials III, W.O. Soboyejo, T.S. Srivatsan, and H.L. Fraser, eds., TMS, Warrendale, PA, 1996, pp. 623–40.

    Google Scholar 

  17. N. Bird, G. Taylor, and Y.Q. Sun: Mater. Res. Soc. Symp. Proc., 1995, vol. 364, pp. 635–40.

    CAS  Google Scholar 

  18. H. Inui, M. Matsumuro, D.-H. Wu, and M. Yamaguchi: Phil. Mag. A, 1997, vol. 75A, pp. 395–423.

    Google Scholar 

  19. P.L. Martin and D.A. Hardwick: in Intermetallic Compounds, J.H. Westbrook and R.L. Fleischer, eds., John Wiley & Sons, New York, NY, 1994, vol. 1, pp. 637–60.

    Google Scholar 

  20. R. Mahapatra, H. Lin, D.P. Pope, and Y.T. Chou: Mater. Res. Soc., 1995, vol. 364, pp. 813–16.

    CAS  Google Scholar 

  21. W.N. Sharpe, Jr. and R.O. Fowler: in Small Specimen Test Techniques Applied to Nuclear Reactor Vessel Thermal Annealing and Plant Life Extension, W.R. Corwin, F.M. Haggag, and W.L. Server, eds., ASTM, Philadelphia, PA, 1993, pp. 386–401.

    Google Scholar 

  22. B. Yuan and W.N.J. Sharpe: J. Testing Evaluation, 1996, in press.

  23. D.A. LaVan and W.N.J. Sharpe: Mechanical Testing of Tensile Microspecimens Taken from Weld Beads, Report to Fatigue and Fracture Branch, Carderock Division, Naval Surface Warfare Center, Bethesda, MD. 1996.

    Google Scholar 

  24. M. Legros, K.J. Hemker, D.A. LaVan, W.N. Sharpe, Jr., M.N. Rittner, and J.R. Weertman: Nanophase and Nanocomposite Materials II, Materials Research Society Symposia Proceedings, Materials Research Society, Pittsburgh, PA, 1996.

    Google Scholar 

  25. M. Zupan, D.A. LaVan, and K.J. Hemker: Mater. Res. Soc. Symp., vol. 460, pp. 171–176, 1996.

    Google Scholar 

  26. B. Yuan: Ph.D. Thesis, The Johns Hopkins University, Baltimore, MD, 1997.

    Google Scholar 

  27. D.A. LaVan and W.N. Sharpe, Jr.: Society for Experimental Mechanics, 1997, in press.

  28. D. Halliday and R. Resnick: Fundamentals of Physics, 2nd ed., John Wiley & Sons, New York, NY, 1977.

    Google Scholar 

  29. W.N. Sharpe, Jr.: “An Interferometric Strain/Displacement Measurement System,” Report No. 101638, Mechanics and Material Branch, NASA Langley Research Center, 1989.

  30. W.N. Sharpe, Jr.: Opt. Eng., 1982, vol. 21, pp. 483–88.

    Google Scholar 

  31. G. Hug: Ph.D. Thesis, Universite de Paris-Sud, Paris, 1988.

    Google Scholar 

  32. Y. He, R.B. Schwarz, A. Migliori, and S.H. Whang: J. Mater. Res., 1995, vol. 10, p. 1187.

    CAS  Google Scholar 

  33. K. Tanaka, T. Ichitsubo, H. Inui, M. Yamaguchi, and M. Koiwa: Phil Mag Lett., 1996, vol. 73, pp. 71–78.

    Article  CAS  Google Scholar 

  34. C.L. Fu and M.H. Yoo: Phil. Mag. Lett., 1990, vol. 62, p. 159.

    CAS  Google Scholar 

  35. M.J. Mehl, J.E. Osburn, D.A. Papaconstantopoulos, and B.M. Klein: Mater. Res. Soc., 1991, vol. 186, p. 277.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the symposium “Fundamentals of Gamma Titanium Aluminides,” presented at the TMS Annual Meeting, February 10–12, 1997, Orlando, Florida, under the auspices of the ASM/MSD Flow & Fracture and Phase Transformations Committees.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zupan, M., Hemker, K.J. Tension and compression testing of single-crystalline gamma Ti-55.5 pct Al. Metall Mater Trans A 29, 65–71 (1998). https://doi.org/10.1007/s11661-998-0159-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-998-0159-1

Keywords

Navigation