Skip to main content

Advertisement

Log in

Shock-induced martensitic transformations in near-equiatomic NiTi alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Shock-impact generated tensile-stress pulses were used to induce B2-to-monoclinic martensitic transformations in two near-equiatomic NiTi alloys having different martensite transformation start (M s ) temperatures. The NiTi-I alloy (M s ≈+27 °C) impacted at room temperature at 2.0 and 2.7 GPa tensile stress-pulse magnitude, showed acicular martensite morphology. These martensite needles had a substructure containing microtwins, typical of “stress-assisted” martensite. The NiTi-II alloy (M s ≈−45 °C) showed no martensite formation when shocked with tensile-stress pulses of 2 GPa. For tensile stresses of 4.1 GPa, the alloy showed spall initiation near the region of maximum tensile-stress duration. In addition, monoclinic martensite needles, with a well-defined dislocation substructure, typical of “strain-induced” martensite, were seen clustering around the spall region. No stress-assisted martensite was formed in this alloy due to its very low M s temperature. The present article documents results of the use of a metallurgical technique for generating large-amplitude tensile stress pulses of finite duration for studies of phase transformations involving changes from a high density to a low density state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.E. Duvall and R.A. Graham: Rev. Modern Phys., 1977, vol. 49, p. 523.

    Article  CAS  Google Scholar 

  2. A.B. Sawoaka: Sci. Am. (Japanese ed.), 1984, vol. 156, p. 25.

    Google Scholar 

  3. E.C.T. Chao: Science, 1967, vol. 156, p. 192.

    Article  CAS  Google Scholar 

  4. P.S. DeCarli and J.C. Jamieson: Science, 1961, vol. 133, p. 821.

    Article  Google Scholar 

  5. W.J. Buehler and R.C. Wiley: The Properties of TiNi and Associated Phases, NOLTR-61-75, U.S. Naval Ordinance Laboratory Report No. 266607, U.S. Naval Ordinance Laboratory, Washington, D.C., 1961.

    Google Scholar 

  6. W.J. Buehler and R.C. Wiley: U.S. Naval Ordinance Laboratory, Washington, D.C., Nickel Base Alloys U.S. Patent No. 3,174,851.

  7. C.M. Jackson, R.J. Wagner, and R.J. Wasilewski: NiTi Shape Memory Alloys, NASA Report No. NASA-SR-5110, NASA, Washington, DC, 1972.

    Google Scholar 

  8. E. Scheil: Z. Anorg. Chem., 1932, vol. 207, p. 21.

    Article  CAS  Google Scholar 

  9. J.R. Pael and M. Cohen: Acta. Metall., 1953, vol. 1, p. 531.

    Article  Google Scholar 

  10. G.B. Olson ad M. Cohen: J. Less-Common Met., 1972, vol. 28, p. 107.

    Article  CAS  Google Scholar 

  11. M.A. Meyers and J.R.C. Guimaraes: Mater. Sci. Eng., 1976, vol. 24, p. 289.

    Article  CAS  Google Scholar 

  12. M.A. Meyers: Metall. Trans. A, 1979, vol. 10A, pp. 1723–27.

    CAS  Google Scholar 

  13. N.N. Thadhani and M.A. Meyers: Acta Metall., 1986, vol. 34, p. 1625.

    Article  CAS  Google Scholar 

  14. S.N. Chang and M.A. Meyers: Acta Metall., 1988, vol. 36, p. 1085.

    Article  CAS  Google Scholar 

  15. Y. Sano, S.N. Chang, M.A. Meyers, and S. Nemat-Nasser: Acta Metall., 1992, vol. 40, pp. 413–17.

    Article  CAS  Google Scholar 

  16. Shock Waves and High Strain Rate Phenomenon in Metals, M.A. Meyers and L.E. Murr, eds., Plenum Press, New York, NY, 1981, p. 1045.

    Google Scholar 

  17. L.M. Barker: SWAP-7, A Stress Wave Analyzing Program, Sandia National Laboratories, Albuquerque, NM, 1967, SC-RR-67-143.

    Google Scholar 

  18. High-Velocity Impact Phenomena, R. Kinslow, ed., Academic Press, New York, NY, 1970, pp. 530–68.

    Google Scholar 

  19. R.G. McQueen, S.P. Marsh, J.W. Taylor, J.N. Fritz, and W.J. Carter: in High-Velocity Impact Phenomena, R. Kinslow, ed., Academic Press, New York, NY, 1970, pp. 293–417.

    Google Scholar 

  20. G.R. Purdy and J. Gordan Parr: Trans. AIME, 1961, vol. 221, p. 636.

    CAS  Google Scholar 

  21. F.E. Wang, W.J. Buehler, and S.J. Pickart: J. Appl. Phys., 1968, vol. 36(10), p. 3232.

    Article  Google Scholar 

  22. R.J. Wasilewski, S.R. Butler, J.E. Hanlon, and D. Worde: Metall. Trans., 1971, vol. 2, pp. 229–38.

    CAS  Google Scholar 

  23. G.M. Michal: Ph.D. Dissertation, Stanford University, Stanford, CA, 1979.

    Google Scholar 

  24. E.O. Snell, J.C. Shyne, and A. Holdberg: Metallograph, 1977, vol. 10, p. 299.

    Article  CAS  Google Scholar 

  25. P.C. Maxwell, A. Golberg, and J.C. Shyne: Metall. Trans., 1974, vol. 5, pp. 1305–18.

    CAS  Google Scholar 

  26. G.B. Olson and Morris Cohen: Metall. Trans. A, 1975, vol. 6A, pp. 791–95.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thakur, A.M., Thadhani, N.N. & Schwarz, R.B. Shock-induced martensitic transformations in near-equiatomic NiTi alloys. Metall Mater Trans A 28, 1445–1455 (1997). https://doi.org/10.1007/s11661-997-0207-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-997-0207-2

Keywords

Navigation