Skip to main content

Advertisement

Log in

Phase Stress Partition in Gray Cast Iron Using In Situ Neutron Diffraction Measurements

  • Topical Collection: Innovations in High Entropy Alloys and Bulk Metallic Glasses
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Gray cast iron comprises α-Fe, Fe3C and graphite with their different anisotropies in terms of structure and mechanical behavior. We perform two different deformation paths as tension-compression and compression-tension on bulk gray iron to capture the stress partitioning. Using in situ neutron diffraction, the composite-like deformation behaviors of α-Fe and Fe3C are revealed simultaneously. Within the elastic deformation stage, both deformation paths do not cause load transfer. However, when the applied compressive stress exceeds 300 MPa, there is a clear load sharing in both paths. From microscopic examinations, the debonding between matrix and graphite is clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. 1. E. Martínez, F. Sanz, S. Pellegrini, E. Jiménez, and J. Blanco: Renewable Energy, 2009, vol. 34, pp. 667-73.

    Google Scholar 

  2. 2. A. Sadeghi, A. Moloodi, M. Golestanipour, and M.M. Shahri: J. Mater. Res. Technol., 2017, vol. 6, pp. 90-95.

    CAS  Google Scholar 

  3. 3. M.A. Azeem, M.K. Bjerre, R.C. Atwood, N. Tiedje, and P.D. Lee: Acta Mater., 2018, vol. 155, pp. 393-401.

    CAS  Google Scholar 

  4. 4. O. Oloyede, T.D. Bigg, R.F. Cochrane, and A.M. Mullis: Mate. Sci. Eng. A, 2016, vol. 654, pp. 143-50.

    CAS  Google Scholar 

  5. 5. O. Oloyede, R.F. Cochrane and A.M. Mullis: J. Alloys Compd., 2017, vol. 707, pp. 347-50.

    CAS  Google Scholar 

  6. M. Moonesan, A. Honarbakhshraouf, F. Madah, and A. Habibollah Zadeh: J. Alloys Compd., 2012, vol. 520, pp. 226-31.

    CAS  Google Scholar 

  7. A.V. Adedayo: J. Braz. Soc. Mech. Sci. Eng., 2010, vol. 32, pp. 171-75.

    Google Scholar 

  8. S. Spooner, E.A. Payzant, and C.R. Hubbard: 2nd International Conference on Quenching & Control of Distortion, Cleveland, OH, 4–7 November 1996.

  9. 9. F. Smith, J. Markgraaff, D. Marais, and A.M. Venter: Mater. Res. Proc., 2018, vol. 4, pp. 79-84.

    CAS  Google Scholar 

  10. 10. P. Schmidt, L.P. Ru, V. Davydov, M. Lundberg, M. Ahmad, T. Vuoristo, D. Bäckström, and S. Johansson: Adv. Mater. Res., 2014, vol. 996, pp. 586-91.

    Google Scholar 

  11. 11. T.L. Lee, J. Mi, S. Ren, S. Zhao, J. Fan, S. Kabra, S. Zhang, and P.S. Grant: Acta Mater., 2018, vol. 155, pp. 318-30.

    CAS  Google Scholar 

  12. T.L. Starr, K. Rafi, B. Stucker, and C.M. Scherzer: Proceedings of the Solid Freeform Fabrication Symposium, University of Texas, Austin, 2012, pp. 439–46.

  13. 13. D. Raabe, S. Sandlöbes, J. Millán, D. Ponge, H. Assadi, M. Herbig and P.P. Choi: Acta Mater., 2013, vol. 61, pp. 6132-52.

    CAS  Google Scholar 

  14. 14. F. Qian and W. M. Rainforth: J Mater Sci, 2019, vol. 54, pp. 6624-31.

    CAS  Google Scholar 

  15. 15. L.E. Murr, E. Martinez, J. Hernandez, S. Collins, K.N. Amato, S.M. Gaytan, and P.W. Shindo: J. Mater. Res. Technol., 2012, vol. 1, pp. 167-77.

    CAS  Google Scholar 

  16. 16. L. Facchini, N. Vicente Jr., I. Lonardelli, E. Magalini, P. Robotti, and A. Molinari: Adv. Eng. Mater., 2010, vol. 12, pp. 184-88.

    CAS  Google Scholar 

  17. 17. T. LeBrun, T. Nakamoto, K. Horikawa, and H. Kobayashi: Materials & Design, 2015, vol. 81, pp. 44-53.

    CAS  Google Scholar 

  18. 18. S. Gorsse, C. Hutchinson, M. Goune, and R. Banerjee: Sci Technol Adv Mater: 2017, vol. 18, pp. 584-610.

    CAS  Google Scholar 

  19. 19. M. Islam, T. Purtonen, H. Piili, A. Salminen, and O. Nyrhilä: Physics Procedia, 2013, vol. 41, pp. 835-42.

    CAS  Google Scholar 

  20. 20. E.W. Huang, S.Y. Lee, J. Jain, Y. Tong, K. An, N.-T. Tsou, T.-N. Lam, D. Yu, H. Chae, S.-W. Chen, S.-M. Chen, and H.-S. Chou: Intermetallics, 2019, vol. 109, pp. 60-67.

    CAS  Google Scholar 

  21. 21. G. Ghosh: AIP Advances, 2015, vol. 5, p. 087102.

    Google Scholar 

  22. 22. Y. Tomota, H. Tokuda, Y. Adachi, M. Wakita, N. Minakawa, A. Moriai, and Y. Morii: Acta Mater., 2004, vol. 52, pp. 5737-45.

    CAS  Google Scholar 

  23. 23. S. Harjo, N. Tsuchida, J. Abe. and W. Gong: Scientific Reports, 2017, vol. 7, p. 15149.

    Google Scholar 

  24. 24. S. Morooka, O. Umezawa, S. Harjo, K. Hasegawa, and Y. Toji, Tetsu-to-Hagane, 2012, vol. 98, pp. 311-19.

    CAS  Google Scholar 

  25. 25. M. Kriška, J. Tacq, K.V. Acker, M. Seefeldt, and S.V. Petegem: J. Phys.: Conf. Ser., 2012, vol. 340, p. 012101.

    Google Scholar 

  26. 26. Y. Wang, Y. Tomota, S. Harjo, W. Gong and T. Ohmura: Mate. Sci. Eng. A, 2016, vol. 676, pp. 522-30.

    CAS  Google Scholar 

  27. ASTM International. ASTM E606/E606M-12, ASTM International, West Conshohocken, PA, 2012.

  28. 28. S.C. Vogel, C. Hartig, L. Lutterotti, R.B. Von Dreele, H.-R. Wenk, and D.J. Williams: Powder Diffraction, 2004, vol. 19, pp. 65-68.

    CAS  Google Scholar 

  29. Wenk, H-R., L. Lutterotti, and S. Vogel. "Texture analysis with the new HIPPO TOF diffractometer." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 515.3 (2003): 575-588.

    CAS  Google Scholar 

  30. S. Matthies, J. Pehl, H.-R. Wenk, L. Lutterotti, and S.C. Vogel: Journal of Applied Crystallography, 2005, vol. 38, pp. 462-75.

    CAS  Google Scholar 

  31. Takajo, Shigehiro, and Sven C. Vogel. "Determination of pole figure coverage for texture measurements with neutron time-of-flight diffractometers." Journal of Applied Crystallography 51.3, 895-900.

    CAS  Google Scholar 

  32. 30. R.I. Barabash, E.W. Huang, J.J. Wall, J.H. Wilkerson, Y. Ren, W. Liu, S.C. Vogel, G.E. Ice, L.M. Pike, and P.K. Liaw: Mate. Sci. Eng. A, 2010, vol. 528, pp. 3-10.

    Google Scholar 

  33. L. Lutterotti, S. Matthies, H.-R. Wenk, A.S. Schultz, J. Appl. Phys., 1997, 81:594-600.

    CAS  Google Scholar 

  34. 32. K. An, H. Skorpenske, A. Stoica, D. Ma, X.-L. Wang, and E. Cakmak: Metall. Mater. Trans. A, 2011, vol. 42, pp. 95-99.

    Google Scholar 

  35. 33. E.W. Huang and P.K. Liaw: MRS Bulletin, 2019, vol. 44, pp. 847-53.

    Google Scholar 

  36. 34. E.W. Huang, D. Yu, J.-W. Yeh, C. Lee, K. An and S.-Y. Tu: Scripta Mater., 2015, vol. 101, pp. 32-35.

    CAS  Google Scholar 

  37. 35. E.-W. Huang, R.I. Barabash, G.E. Ice, W. Liu, Y.-L. Liu, J.-J. Kai and P.K. Liaw, JOM, 2009, vol. 61(12), p. 53-58.

    CAS  Google Scholar 

  38. 36. E.W. Huang, R.I. Barabash, B. Clausen, Y.L. Liu, J.J. Kai, G.E. Ice, K.P. Woods and P.K. Liaw: International Journal of Plasticity, 2010, vol. 26, pp. 1124-37.

    CAS  Google Scholar 

  39. 38. H.R. Wenk, L. Lutterotti, and S.C. Vogel: Powder Diffraction, 2010, vol. 25, pp. 283-96.

    CAS  Google Scholar 

  40. 39. E. R. Weibel, G. S. Kistler, and W.F. Scherle: The Journal of Cell Biology, 1966, vol. 30, pp. 23-38.

    CAS  Google Scholar 

  41. G.V. Voort, Tech-Notes, Research and Technology Buehler Ltd., Lake Bluff, Illinois, U.S.A, 2015, vol. 1 (5), p. 1.

  42. Allen.C. Larson and Robert.B. Von Dreele: Los Alamos Natl. Lab. Rep. LAUR, 2004, vol. 86, pp. 86–748.

  43. D. Naito, S. Kubota, S. Harjo, and Y. Tomota: ISIJ International, 2013, vol. 53, pp. 1292-94.

    CAS  Google Scholar 

  44. M.L. Young, J.D. Almer, M.R. Daymond, D.R. Haeffner, and D.C. Dunand: Acta Mater., 2007, vol. 55, pp. 1999-2011.

    CAS  Google Scholar 

  45. H. Shen and C.J. Lissenden: Mate. Sci. Eng. A, 2002, vol. 338, pp. 271-81.

    Google Scholar 

  46. M.T. Hutchings, P.J. Withers, T.M. Holden, T. Lorentzen: Introduction to the Characterization of Residual Stress by Neutron Diffraction, 1st ed., CRC Press, Boca Raton, 2005.

    Google Scholar 

  47. C. Jiang, S.G. Srinivasan, A. Caro, and S.A. Maloy: Journal of Applied Physics, 2008, vol. 103, p. 043502.

    Google Scholar 

  48. P.J. Withers and A.P. Clarke: Acta Mater., 1998, vol. 46, pp. 6585-98.

    CAS  Google Scholar 

  49. E.W. Huang, R. Barabash, B. Clausen and P.K. Liaw: Metall. Mater. Trans. A, 2012, vol. 43, pp. 1454-61.

    Google Scholar 

  50. E.W. Huang, C.K. Chang, P.K. Liaw, and T.R. Suei: Fatigue & Fracture of Engineering Materials & Structures, 2016, vol. 39, pp. 675-85.

    CAS  Google Scholar 

  51. E.W. Huang, G. Csiszár, Y.C. Lo, Y.L. Huang, W.J. Lee, T. Ungár, and P.K. Liaw: Adv. Eng. Mater., 2012, vol. 14, pp. 902-08.

    CAS  Google Scholar 

  52. V. Norman and M. Calmunger: International Journal of Plasticity, 2019, vol. 115, pp. 200-15.

    CAS  Google Scholar 

  53. S.A. Brauer, W.R. Whittington, K.L. Johnson, B. Li, H. Rhee, P.G. Allison, C.K. Crane, and M.F. Horstemeyer: Journal of Engineering Materials and Technology, 2017, vol. 139, p. 021013.

    Google Scholar 

Download references

Acknowledgments

The Lujan Neutron Scattering Center at the Los Alamos Neutron Science Center is funded by the Department of Energy’s Office of Basic Energy Science. The Los Alamos National Laboratory is operated by the Los Alamos National Security LLC under the DOE Contract of DE-AC52-06NA25396 and DE-AC05-00OR22725. Research conducted at ORNL’s Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. The authors appreciate the support of “Center for the Semiconductor Technology Research” from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan and the Ministry of Science and Technology (MOST) Programs 108-2221-E-009-131-MY4, 108-2218-E-007-056, and 109-2634-F-009-029. This work was financially supported by the “High Entropy Materials Center” from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan. EWH and his group members very much appreciate the financial support from the National Synchrotron Radiation Research Center (NSRRC) Neutron Program (MOST-108-2739-M-213-001). SYL was supported by the National Research Foundation (NRF) grant funded by the Korean Government (2020M2A2A6A05026873, 2020K1A3A7A09078090, 2017M2A2A6A05017653).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E-Wen Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 1, 2020.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 230 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lam, TN., Wu, SC., Chae, H. et al. Phase Stress Partition in Gray Cast Iron Using In Situ Neutron Diffraction Measurements. Metall Mater Trans A 51, 5029–5035 (2020). https://doi.org/10.1007/s11661-020-05933-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05933-8

Navigation