Skip to main content

Advertisement

Log in

Sintering and Joining of Ni-Based Superalloys via FAST for Turbine Disc Applications

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Turbine discs are currently made of nickel-based superalloys, known for their high strength and creep resistance at high temperatures. Turbine discs of dual microstructure, each tailored for different functions, allow for performance improvement and weight savings, but current methods of joining dissimilar nickel-based superalloys, such as friction welding, exhibit a heat-affected zone (HAZ) and localized melting at the interface, leading to weak bonding. Here, we demonstrate that field-assisted sintering technology (FAST) can be effective in sintering CM247LC powder to high relative density and in joining two dissimilar superalloys, CM247LC and Inconel 718 (IN718), by diffusion bonding without forming a heat-affected zone. The subscale tensile testing of this FAST-joined specimen resulted in failure through both the bonding zone and IN718; the yield strength (~ 348 MPa) is slighter higher than that of FAST-processed IN718, confirming successful joining by FAST.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.  4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. S. Langmaak,S. Wiseall, C. Bru, R. Adkins, J. Scanlan, and A. Sóbester: Int. J. Prod. Econ., 2013, vol. 142, pp. 74–88.

    Article  Google Scholar 

  2. The Jet Engine, Rolls-Royce plc, Derby, England, 1996; pp. 45-57.

    Google Scholar 

  3. R.C. Reed: The Superalloys Fundamentals and Applications, Cambridge University Press, Cambridge, 2006; pp. 121–22, 217–22.

  4. J. Singh and C. Haines, Adv. Mater. Process., 2016, vol. 174, pp. 22-24.

    Google Scholar 

  5. J. Gayda, T. P. Gabb, and P. T. Kantzos: Superalloys, 2004, vol. 10, pp. 323-329.

    Article  Google Scholar 

  6. J. Lemsky and J. Gayda: National Aeronautics and Space Administration. Cleveland, NASA/CR-2005-213574, E-15019, 2005.

  7. Y. Ning, Z. Yao, H. Guo, and M. W. Fu: J. Alloy. Compd., 2013, vol. 557, pp. 27-33.

    Article  CAS  Google Scholar 

  8. D. P. Mourer and J. L. Williams: Superalloys, 2004, vol. 10, pp. 401-407.

    Article  Google Scholar 

  9. N. Senkov, D. W. Mahaffey, and S. L. Semiatin: Metall. Mater. Trans. A, 2014, vol. 45, pp. 5545-5561.

    Article  CAS  Google Scholar 

  10. J. S. Tiley, D. W. Mahaffey, T. Alam, T. Rojhirunsakool, O. Senkov, T. Parthasarthy, and R. Banerjee: Mat. Sci. Eng. A-Struct., 2016, vol. 662, pp. 26-35.

    Article  CAS  Google Scholar 

  11. D. W. Mahaffey, O N. Senkov, R. Shivpuri, S. L. Semiatin: Metall. Mater. Trans. A, 2016, vol. 47, pp. 3981-4000.

    Article  CAS  Google Scholar 

  12. O. N. Senkov, D. W. Mahaffey, and S. L. Semiatin: Metall. Mater. Trans. A, 2016, vol. 47, pp. 6121-6137.

    Article  CAS  Google Scholar 

  13. M. Karadge, M. Preuss, P. J. Withers, and S. Bray: Mat. Sci. Eng. A-Struct., 2008, vol. 491, pp. 446-453.

    Article  CAS  Google Scholar 

  14. S. Selvi, A. Vishvaksenan, and E. Rajesekar: Defence Technology, 2018, vol. 14, pp. 28-44.

    Article  Google Scholar 

  15. A. Benoit, S. Jobez, P. Paillard, V. Klosek, and T. Baudin: Sci. Technol. Weld. Joi., 2011, vol. 16, pp. 477-482.

    Article  CAS  Google Scholar 

  16. O. T. Ola and F. E. Doern: Mater. Design, 2014, vol. 57, pp. 51-59.

    Article  CAS  Google Scholar 

  17. M. Tokita: Mater. Sci. Forum, 1999, vol. 308-311, pp. 83-88.

    Article  Google Scholar 

  18. J. A. Schneider, A. K. Mukherjee, K. Yamazaki, and K. Shoda: Materials Letters, 1995, vol. 25, no. 3-4, pp. 101-104.

    Article  CAS  Google Scholar 

  19. G. Xie, O. Ohashi, M. Song, K. Mitsuishi, and K. Furuya: Appl. Surf. Sci., 2005, vol. 241, no. 1-2, pp. 102-106.

    Article  CAS  Google Scholar 

  20. O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Räthel and M. Herrmann: Adv. Eng. Mater., 2014, vol. 16, pp. 830-849.

    Article  CAS  Google Scholar 

  21. M. Belmonte, J. González-Julián, P. Miranzo and M. I. Osendi: J. Eur. Ceram. Soc., 2010, vol. 30, pp. 2937-2946.

    Article  CAS  Google Scholar 

  22. X. Song, X. Liu and J. Zhang: J. Am. Ceram. Soc., 2006, vol. 89, pp. 494-500.

    Article  CAS  Google Scholar 

  23. M. Omori: Mat. Sci. Eng. A-Struct., 2000, vol. 287, pp. 183-188.

    Article  Google Scholar 

  24. O. El-Atwani, D. V. Quach, M. Efe, P. R. Cantwell, B. Heim, B. Schultz, E. A. Stach, J. R. Groza and J. P. Allain: Mat. Sci. Eng. A-Struct., 2011, vol. 528, pp. 5670-5677.

    Article  CAS  Google Scholar 

  25. M. Eriksson, M. Radwan and Z. Shen: Int. J. Refract. Met. Hard Mater., 2013, vol. 36, pp. 31-37.

    Article  CAS  Google Scholar 

  26. J. J. Pope, E. L. Calvert, N. S. Weston and M. Jackson: J. Mater. Process Tech., 2019, vol. 269, pp. 200–07.

    Article  CAS  Google Scholar 

  27. X. Zhou, Y. H. Han, X. Shen, S. Du, J. Lee and Q. Huang: J. Nucl. Mater., 2015, vol. 466, pp. 322-327.

    Article  CAS  Google Scholar 

  28. K. Kohama and K. Ito, Mater. Design, 2016, vol. 110, pp. 888-894.

    Article  CAS  Google Scholar 

  29. D. Verma, J. Singh, A. H. Varma and V. Tomar: JOM, 2015, vol. 67, no. 8, pp. 1694-1703.

    Article  CAS  Google Scholar 

  30. Z. Yang, K. Hu, D. Hu, C. Han, Y. Tong, X. Yang and X. Wu: J. Alloy Compd., 2018, vol. 764, pp. 582-590.

    Article  CAS  Google Scholar 

  31. K. Nishimoto, K. Saida, and R. Tsuduki, Sci. Technol. Weld. Joi., 2004, vol. 9, pp. 493-500.

    Article  CAS  Google Scholar 

  32. H. Yang, X. Zhou, W. Shi, J. Wang, P. Li, F. Chen and L. He: J. Eur. Ceram. Soc., 2017, vol. 37, no. 4, pp. 1233-1241.

    Article  CAS  Google Scholar 

  33. H. Dong, Y. Yu, X. Jin, X. Tian, W. He, W. Ma: Ceram. Int., 2016, vol. 42, no. 13, pp. 14463-14468.

    Article  CAS  Google Scholar 

  34. N. Masahashi, S. Semboshi, K. Watanabe, Y. Higuchi, H. Yamagata and Y. Ishizaki: J. Mater. Sci., 2013, vol. 48, no. 17, pp. 5801-5809.

    Article  CAS  Google Scholar 

  35. S. Pasebani, A. K. Dutt, J. Burns, I. Charit and R. S. Mishra: Mat. Sci. Eng. A-Struct., 2015, vol. 630, pp. 155-169.

    Article  CAS  Google Scholar 

  36. A. H. Pakseresht, A. H. Javadi, M. Bahrami, F. Khodabakhshi and A. Simchi: Ceram. Int., 2016, vol. 42(2), pp. 2770-2779.

    Article  CAS  Google Scholar 

  37. J. S. Hou, J. T. Guo, Y. X. Wu, L. Z. Zhou, and H. Q. Ye, Mat. Sci. Eng. A-Struct., 2010, vol. 527, pp.1548-1554.

    Article  CAS  Google Scholar 

  38. Y. Tang, J. Liu, H. Cheng, H. Yu, Y. Zhang, and J. Zhu, J. Alloy Compd., 2019, vol. 772, pp. 949-954.

    Article  CAS  Google Scholar 

  39. S.-I. Baik, M. J. S. Rawlings, and D. C. Dunand, Acta Mater., 2018, vol. 153, pp. 126-135.

    Article  CAS  Google Scholar 

  40. P. S. Kotval, J. D. Venables, and R. W. Calder: Metall. Trans., 1972, vol. 3, pp. 457-462.

    Article  Google Scholar 

  41. D. N. Duhl and C. P. Sullivan: JOM, 1971, vol. 23, pp. 38-40.

    Article  CAS  Google Scholar 

  42. E. Conrath and P. Berthod: Oxid. Met., 2014, vol. 81, no. 3-4, pp. 393-405.

    Article  CAS  Google Scholar 

  43. E. Conrath and P. Berthod: Mater. Sci., 2018, vol. 53, no. 6, pp. 861-867.

    Article  CAS  Google Scholar 

  44. A. Selvig, X. Huang, M. Hildebrand, and D. Stek, J. Eng. Gas Turb. Power, 2011, vol. 133, pp. 082101:1–8.

  45. K. K. Mehta, R. Mitra, and S. Chawla, Mat. Sci. Eng. A-Struct., 2014, vol. 611, pp. 280-289.

    Article  CAS  Google Scholar 

  46. K. Harris, G. L. Erickson, R. E. Schwer: Superalloys, 1984, vol. 5, pp. 221-230.

    Google Scholar 

  47. J. E. MacDonald, R. H. U. Khan, M. Aristizabal, K. E. A. Essa, M. J. Lunt, and M. M. Attallah: Mater. Design, 2019, vol. 174, pp. 107796-107896.

    Article  CAS  Google Scholar 

  48. Alloy Digest: CM 247 LC, ASM International, Orange, 1992.

  49. American Society for Metals Reference Publications: ASM Engineered Materials Reference Book; ASM International, Metals Park, OH, 1989, p. 186.

    Google Scholar 

  50. R. Muñoz-Moreno, V. D. Divya, S. L. Driver, O. M. D. M. Messé, T. Illston, S. Baker and H. J. Stone: Mat. Sci. Eng. A-Struct, 2016, vol. 674, pp. 529-539.

    Article  CAS  Google Scholar 

  51. B. Baufeld: J. Mater. Eng. Perform., 2012, vol. 21, no. 7, pp. 1416-1421.

    Article  CAS  Google Scholar 

  52. S. C. Lee, S. H. Chang, T. P. Tang, H. H. Ho, and J. K. Chen, Mater. Trans., 2006, vol. 47, pp. 2877-2881.

    Article  CAS  Google Scholar 

  53. J.F. Barker: Metal Progress, 1962, vol. 81, pp. 72–76.

    CAS  Google Scholar 

  54. N. Ergin, O. Ozdemir, S. Demirkiran, S. Sen, and U. Sen, Acta Phys. Pol. A, 2014, vol. 127, pp. 1100-1102.

    Article  CAS  Google Scholar 

  55. V.S. Babu, A.S. Pavlovic, and M.S. Seehra: Proceedings of the Superalloys 718, 625, 706 and Various Derivatives, 1997, pp. 689–93.

  56. J. F. Barker, E. W. Ross, and J. F. Radavich, JOM, 1970, vol. 22, pp. 31-41.

    Article  CAS  Google Scholar 

  57. I. S. Kim, B. G. Choi, S. M. Seo, D. H. Kim and C. Y. Jo, Materials Letters, 2008, vol. 62, no. 6-7, pp. 1110-1113.

    Article  CAS  Google Scholar 

  58. A. Chamanfar, L. Sarrat, M. Jahazi, M. Asadi, A. Weck, and A. K. Koul, Mater. Design, 2013, vol. 52, pp. 791-800.

    Article  CAS  Google Scholar 

  59. G. A. Rao, M. Srinivas, D. S. Sarma, Mater. Sci. Tech. Ser., 2004, vol. 20, no. 9, pp. 1161-1170.

    Article  CAS  Google Scholar 

  60. G. A. Rao, M. Srinivas, and D. S. Sarma, Mater. Sci. Eng. A Struct, 2006, vol. 418, no. 1, pp. 282-291.

  61. L. Chang, W. Sun, Y. Cui, and R. Yang, Mat. Sci. Eng. A-Struct, 2014, vol. 599, pp. 186-195.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank material donations from the Air Force Research Laboratory. The authors also would like to thank Petr Kolonin and Kevin Busko (ARL/PSU) for their technical assistance in FAST sintering and Donald Stiver (ARL/PSU) for his assistance in die design. This work was supported by the Government under Agreement No. W911W6-17-2-0003, through the Penn State Vertical Lift Research Center of Excellence. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation thereon. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Aviation Development Directorate or the U.S Government. This work was also partly supported by the Applied Research Laboratory at The Pennsylvania State University (ARL/PSU) through subcontract #S-143-000-001 under a UES, Inc. Phase II SBIR (FA8650-17-P-2024).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Charis I. Lin or Jogender Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 6, 2019.

Appendix

Appendix

See Figures A1 and A2.

Fig. A1
figure 17

XRD plots of CM247LC powders before and after FAST sintering (45 MPa, 1225 °C, 15 min)

Fig. A2
figure 18

Exemplary stress–strain plots of tensile testing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C.I., Niuman, S.J., Kulkarni, A.K. et al. Sintering and Joining of Ni-Based Superalloys via FAST for Turbine Disc Applications. Metall Mater Trans A 51, 1353–1366 (2020). https://doi.org/10.1007/s11661-019-05600-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05600-7

Navigation