Skip to main content
Log in

Dissimilar Impact Welding of 6111-T4, 5052-H32 Aluminum Alloys to 22MnB5, DP980 Steels and the Structure–Property Relationship of a Strongly Bonded Interface

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The ability to weld high-strength aluminum to high-strength steel is highly desired for vehicle lightweighting but difficult to attain by conventional means. In this work, vaporizing foil actuator welding was used to successfully weld four Al/Fe combinations consisting of high-strength alloys: AA5052-H32, AA6111-T4, DP980, and 22MnB5. Flyer velocities up to 727 m/s were reached using 10 kJ input energy. In lap-shear testing, samples primarily failed in base aluminum near the aluminum’s native strength, showing that the welds were stronger than a base metal and that the base metal was not significantly weakened by the welding process. A particularly strong weld area was studied by transmission electron microscopy to shed light on the microstructural features of strong impact welds. It was found to be characterized by a continuously bonded, fully crystalline interface, extremely fine (nanoscale) grains, mesoscopic as well as microscopic wavy features, and lack of large continuous intermetallic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. William J. Joost: JOM, 2012, vol. 64, pp. 1032-1038

    Article  Google Scholar 

  2. Ranfeng Qiu, Chihiro Iwamoto, and Shinobu Satonaka: J. Mater. Process. Technol., 2009, vol. 209, pp. 4186–93.

    Article  Google Scholar 

  3. R.Y. Hwang and C.P. Chou: Scripta Mater., 1998, vol. 38, pp. 215–21.

    Article  Google Scholar 

  4. Simon Benson, Jonathan Downes, and Robert S. Dow: Thin-Walled Struct., 2013, vol. 70, pp. 19–32.

    Article  Google Scholar 

  5. Y. Abe, T. Kato, and K. Mori: J. Mater. Process. Technol., 2006, vol. 177, pp. 417–21.

    Article  Google Scholar 

  6. T.A. Barnes and I.R. Pashby: J. Mater. Process. Technol., 2000, vol. 99, pp. 72–79.

    Article  Google Scholar 

  7. Paul Briskham, Nicholas Blundell, Li Han, Richard Hewitt, Ken Young, and Douglas Boomer: Sae Sp, 2006, vol. 2034, p. 105.

    Google Scholar 

  8. Z. Shen, Y. Chen, M. Haghshenas, and A.P. Gerlich: Eng. Sci. Technol., Int. J., 2015, vol. 18, pp. 8–15.

    Google Scholar 

  9. S. Fukada, R. Ohashi, M. Fujimoto, and H. Okada: Refill Friction Stir Spot Welding of Dissimilar Materials Consisting of A6061 and Hot Dip Zinc-Coated Steel Sheets, Woodhead Publishing Limited, Cambridge, 2013.

    Book  Google Scholar 

  10. A. Vivek, S.R. Hansen, B.C. Liu, and Glenn S. Daehn: J. Mater. Process. Technol., 2013, vol. 213, pp. 2304–11.

    Article  Google Scholar 

  11. Mustafa Acarer and Bilge Demir: Mater. Lett., 2008, vol. 62, pp. 4158–60.

    Article  Google Scholar 

  12. Arun Prasath Manogaran, Prabu Manoharan, Didier Priem, Surendar Marya, and Guillaume Racineux: J. Mater. Process. Technol., 2014, vol. 214, pp. 1236–44.

    Article  Google Scholar 

  13. G.R. Abrahamson: J. Appl. Mech., 1961. 28:519-528

    Article  Google Scholar 

  14. N. Mårtensson and J. Schweitz: Metall. Trans. A, 1985, vol. 16A, pp. 841–52.

    Google Scholar 

  15. B. Crossland, A.S. Bahrani, and T.J. Black: Proc. R. Soc. London. Ser. A: Math. Phys. Sci., 1967, pp. 123–36.

  16. Haiyang Lei, Yongbing Li, Blair E. Carlson, and Zhongqin Lin: J. Manuf. Sci. Eng., 2015, vol. 137, p. 51028.

    Article  Google Scholar 

  17. A. Szecket: J. Vac. Sci. Technol. A, 1985, vol. 3, p. 2588.

    Article  Google Scholar 

  18. O.T. Strand, D.R. Goosman, C. Martinez, T.L. Whitworth, and W.W. Kuhlow: Rev. Sci. Instrum., 2006, vol. 77, p. 83108.

    Article  Google Scholar 

  19. S.R. Hansen, A. Vivek, and G.S. Daehn: Proc. Int. Conf. High Speed Form, 2014.

  20. Jason R. Johnson, Geoff Taber, Anupam Vivek, Yuan Zhang, Scott Golowin, Kristin Banik, Gregg K. Fenton, and Glenn S. Daehn: Steel Res. Int., 2009, vol. 80, pp. 359–65.

    Google Scholar 

  21. Patrick W. Trimby: Ultramicroscopy, 2012, vol. 120, pp. 16–24.

    Article  Google Scholar 

  22. A. Vivek, B. Liu, D. Sakkinen, M. Harris, and G. Daehn: SAE Technical Paper, 2015, pp. 2–6.

  23. A.K. Lakshminarayanan, V. Balasubramanian, and K. Elangovan: Int. J. Adv. Manuf. Technol., 2009, vol. 40, pp. 286–96.

    Article  Google Scholar 

  24. Jérôme Fontane, Laurent Joly, and Jean N. Reinaud: Phys. Fluids, 2008, vol. 20, p. 91109.

    Article  Google Scholar 

  25. Zhisong Fan, Haiping Yu, and Chunfeng Li: Scripta Mater., 2016, vol. 110, pp. 14–18.

    Article  Google Scholar 

  26. J Li, Q Yu, Z Zhang, W Xu, X Sun: Appl. Phys. Lett. 2016, vol. 108, pp. 201606.

    Article  Google Scholar 

  27. M. Presley: Ph.D. Dissertation, The Ohio State University, Columbus, OH, 2016.

  28. J.L. Brimhall, H.E. Kissinger, and L.A. Charlot: Radiat. Eff., 1983, vol. 77, pp. 273–93.

    Article  Google Scholar 

  29. Taku Sakai, Andrey Belyakov, Rustam Kaibyshev, Hiromi Miura, and John J. Jonas: Progr. Mater. Sci., 2014, vol. 60, pp. 130–207.

    Article  Google Scholar 

  30. L.E. Murr, G. Liu, and J.C. McClure: J. Mater. Sci. Lett., 1997, vol. 16, pp. 1801–03.

    Article  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE), under Award No. DE-EE0006451. Special thanks go to Honda Motor Company for supplying the DP980 and 22MnB5 used in this work. The TEM work was conducted in the Center for Accelerated Maturation of Materials (CAMM) at the OSU Center for Advanced Microscopy and Analysis (CEMAS).

Disclaimer

Neither the U.S. Government, nor any of its employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy or completeness of any information, product, or process disclosed, or represents that its manufacture or use would not infringe privately owned rights. Any reference to a commercial product, process, or service does not constitute an endorsement or favoring by the U.S. Government. The views and opinions of the authors stated do not necessarily reflect those of the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert Liu.

Additional information

Manuscript submitted April 18, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Vivek, A., Presley, M. et al. Dissimilar Impact Welding of 6111-T4, 5052-H32 Aluminum Alloys to 22MnB5, DP980 Steels and the Structure–Property Relationship of a Strongly Bonded Interface. Metall Mater Trans A 49, 899–907 (2018). https://doi.org/10.1007/s11661-017-4429-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4429-7

Navigation