Skip to main content
Log in

Complexity of Products of Tungsten Corrosion: Comparison of the 3D Pourbaix Diagrams with the Experimental Data

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Tungsten is one of the most attractive metals in applications where materials are subject to high temperature and strong fields. However, in harsh aqueous environment, tungsten is prone to corrosion. Control of tungsten corrosion in aqueous solutions is a challenging task: as a transition metal, tungsten is able to produce a vast variety of oxides and hydrates. To reveal the thermodynamic pathway of corrosion at different conditions, the 3D Pourbaix diagrams relating the reduction potential, pH, and concentration of different tungsten-based compounds were constructed. These diagrams allow one to identify the most thermodynamically stable tungsten-based compounds. The 3D Pourbaix diagrams were used to explain different regimes of anodic dissolution of tungsten in aqueous solutions of potassium hydroxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.C. Wang Li, C.Y.: Tungsten. Its History, Geology, Ore-Dressing, Metallurgy, Chemistry, Analysis, Applications and Economics, Third Edition ed., Reinhold Publishing Corporation, New York, 1955, pp. 1–506.

    Google Scholar 

  2. E. Lassner and W.-D. Schubert: Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, Kluwer Academic/Plenum Publishers, New York, 1999, pp. 1–422.

    Book  Google Scholar 

  3. G. S. Kelsey: J. Electrochem. Soc., 1977, vol. 124, pp. 814–19.

    Article  Google Scholar 

  4. B. Bhattacharyya, J. Munda and M. Malapati: Int. J. Mach. Tools Manuf., 2004, vol. 44, pp. 1577-1589.

    Article  Google Scholar 

  5. R. Schuster, V. Kirchner, P. Allongue and G. Ertl: Science, 2000, vol. 289, pp. 98–101.

    Article  Google Scholar 

  6. K. P. Rajurkar, G. Levy, A. Malshe, M. M. Sundaram, J. McGeough, X. Hu, R. Resnick and A. DeSilva: Cirp Ann. Manuf. Technol., 2006, vol. 55, pp. 643–66.

    Article  Google Scholar 

  7. D. Landolt, P. F. Chauvy and O. Zinger: Electrochim. Acta, 2003, vol. 48, pp. 3185–3201.

    Article  Google Scholar 

  8. Z-W Fan and L-W Hourng: Int. J. Mach. Tools Manuf., 2009, vol. 49, pp. 659–66.

    Article  Google Scholar 

  9. D. Landolt: Corrosion and Surface Chemistry of Metals, EPFL Press, Lausanne 2007, pp. 1–400.

    Book  Google Scholar 

  10. M. Anik: Corros. Sci., 2010, vol. 52, pp. 3109-3117.

    Article  Google Scholar 

  11. M. Kulakov, I. Luzinov and K. G. Kornev: Langmuir, 2009, vol. 25, pp. 4462–68.

    Article  Google Scholar 

  12. H. D. Zheng, J. Z. Ou, M. S. Strano, R. B. Kaner, A. Mitchell and K. Kalantar-Zadeh: Adv. Funct. Mater., 2011, vol. 21, pp. 2175–96.

    Article  Google Scholar 

  13. R. Petkewich: Chem. Eng. News, 2009, vol. 87, pp. 63–65.

    Article  Google Scholar 

  14. M. L. Witten, P. R. Sheppard and B. L. Witten: Chemico-Biological Interactions, 2012, vol. 196, pp. 87–88.

    Article  Google Scholar 

  15. M Pourbaix: Atlas of Electrochemical Equilibria in Aqueous Solutions, 1st English ed., Pergamon Press, Oxford, New York,, 1966, pp. 1–644.

    Google Scholar 

  16. G. K. Schweitzer and L.L. Pesterfield: The Aqueous Chemistry of the Elements, Oxford University Press, Oxford; New York, 2010.

    Google Scholar 

  17. M. Nave, B. Rubin, V. Maximov, S. Creager and K. G. Kornev: Nanotechnology, 2013, vol. 24, pp. 355702.

    Article  Google Scholar 

  18. M. I. Nave, Y. C. Chen-Wiegart, J. Wang and K. G. Kornev: Phys. Chem. Chem. Phys., 2015, vol. 17, pp. 23121–31.

    Article  Google Scholar 

  19. M.I. Nave, J.P. Allen, Y.-C.K. Chen-Wiegart, J. Wang, S.R. Kalidindi and K.G. Kornev Sci Rep, 2015, vol. 5, pp. 15257.

    Article  Google Scholar 

  20. W. G. Cook and R. P. Olive: Corros. Sci., 2012, vol. 55, pp. 326–31.

    Article  Google Scholar 

  21. B. Beverskog and I. Puigdomenech: Corros. Sci., 1996, vol. 38, pp. 2121–35.

    Article  Google Scholar 

  22. B. Beverskog and I. Puigdomenech: J. Electrochem. Soc. 1997, vol. 144, pp. 3476–83.

    Article  Google Scholar 

  23. B. Beverskog and I. Puigdomenech: Corros. Sci., 1997, vol. 39, pp. 969–80.

    Article  Google Scholar 

  24. T. Nickchi and A. Alfantazi: Electrochim. Acta, 2013, vol. 104, pp. 69–77.

    Article  Google Scholar 

  25. R. A. Rapp and R. F. Mehl: Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2000, vol. 31A, pp. 2105–18.

    Article  Google Scholar 

  26. R. A. Rapp and Y. S. Zhang: JOM J. Miner. Met. Mater. Soc., 1994, vol. 46, pp. 47–55.

    Article  Google Scholar 

  27. K. Osseo-Asare: Metall. Trans. B, 1982, vol. 13B, pp. 555–64.

    Article  Google Scholar 

  28. E. A. Kneer, C. Raghunath, S. Raghavan and J. S. Jeon: Journal of the Electrochemical Society, 1996, vol. 143, pp. 4095–4100.

    Article  Google Scholar 

  29. P. A. Brook: Corrosion Science, 1971, vol. 11, pp. 389–96.

    Article  Google Scholar 

  30. B. G. Williams and W. H. Patrick: J. Chem. Educ., 1977, vol. 54, pp. 107.

    Article  Google Scholar 

  31. R. Salhi: Iran. J. Chem. Chem. Eng. Int. Engl. Ed., 2005, vol. 24, pp. 29–39.

    Google Scholar 

  32. R. Salhi and K. E. Bouhidel: Asian J. Chem., 2005, vol. 17, pp. 245–58.

    Google Scholar 

  33. J. C. Angus and C. T. Angus: J. Electrochem. Soc., 1985, vol. 132, pp. 1014–19.

    Article  Google Scholar 

  34. K. R. Bullock: J. Electrochem. Soc., 1980, vol. 127, pp. 662–64.

    Article  Google Scholar 

  35. R.M.; Christ Garrels, C.L.: Solutions, Minerals, and Equilibria, Harper & Row. Publishers, New York, NY, 1965, pp. 1–450.

    Google Scholar 

  36. L. L. Pesterfield, J. B. Maddox, M. S. Crocker and G. K. Schweitzer: J. Chem. Educ., 2012, vol. 89, pp. 891–99.

    Article  Google Scholar 

  37. G.T. Burstein (University of Cambridge), http://www.doitpoms.ac.uk/tlplib/pourbaix/3d_diagram.php Accessed 10 Dec 2013.

  38. E. Lassner and W.-D. . Schubert: Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, Kluwer Academic/Plenum Publishers, New York, 1999, pp. 422 p.

    Book  Google Scholar 

  39. MT Pope: Heteropoly and isopoly oxometalates, Springer, New York, 1983, pp. 1–180.

    Google Scholar 

  40. Denny A. Jones: Principles and prevention of corrosion, Macmillan Pub. Co., Collier Macmillan Canada, Maxwell Macmillan International Pub. Group, New York, Toronto, 1991, pp. 1–568.

    Google Scholar 

  41. M. Anik and K. Osseo-Asare: J. Electrochem. Soc., 2002, vol. 149, pp. B224–B233.

    Article  Google Scholar 

  42. M. Anik: Electrochim. Acta, 2009, vol. 54, pp. 3943–51.

    Article  Google Scholar 

  43. M. Anik and T. Cansizoglu: J. Appl. Electrochem., 2006, vol. 36, pp. 603–08.

    Article  Google Scholar 

  44. E. Patrick, M. E. Orazem, J. C. Sanchez and T. Nishida: J. Neurosci. Methods, 2011, vol. 198, pp. 158–71.

    Article  Google Scholar 

  45. P Pradyot: Handbook of Inorganic Chemicals, New York, McGraw-Hill Professional, 2002, pp. 949–55.

    Google Scholar 

  46. J. Cao, B. D. Luo, H. L. Lin, B. Y. Xu and S. F. Chen: Appl. Catal. B Environ., 2012, vol. 111, pp. 288–96.

    Article  Google Scholar 

  47. X. Francis, M. W. R. Silverstein, D. J. Keimle, Willey, 2005.

  48. M. F. Daniel, B. Desbat, J. C. Lassegues, B. Gerand and M. Figlarz: J. Solid State Chem., 1987, vol. 67, pp. 235–47.

    Article  Google Scholar 

  49. H. I. S. Nogueira, A. M. V. Cavaleiro, J. Rocha, T. Trindade and J. D. P. de Jesus: Mater. Res. Bull., 2004, vol. 39, pp. 683–93.

    Article  Google Scholar 

  50. S. Salmaoui, F. Sediri, N. Gharbi, C. Perruchot, and M. Jouini: Electrochim. Acta, 2013, vol. 108, pp. 634–43.

    Article  Google Scholar 

  51. L. Zhang, X. C. Tang, Z. G. Lu, Z. M. Wang, L. X. Li and Y. H. Xiao: Appl. Surf. Sci., 2011, vol. 258, pp. 1719–24.

    Article  Google Scholar 

  52. V. D. Nithya, R. K. Selvan, L. Vasylechko and C. Sanjeeviraja: RSC Adv. , 2014, vol. 4, pp. 4343–52.

    Article  Google Scholar 

  53. A. H. Yan, C. S. Xie, D. W. Zeng, S. Z. Cai and M. L. Hu: Mater. Res. Bull., 2010, vol. 45, pp. 1541–47.

    Article  Google Scholar 

  54. M. Gotic, M. Ivanda, S. Popovic and S. Music: Mater. Sci. Eng. B, 2000, vol. 77, pp. 193–201.

    Article  Google Scholar 

  55. P. Mokrejs, F. Langmaier, D. Janacova, M. Mladek, K. Kolomaznik and V. Vasek: J. Therm. Anal. Calorim., 2009, vol. 98, pp. 299–307.

    Article  Google Scholar 

  56. Mustafa Anik: Corros. Sci., 2006, vol. 48, pp. 4158–73.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank L.L. Pesterfield and J.B. Maddox for providing the original Wolfram Mahtematica® code for constructing the Pourbaix diagrams which we modified for the tungsten case. We also thank Dr. Colin McMillen for his help with XRD experiments and Kim Ivey for her help with the FTIR and thermal analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin G. Kornev.

Additional information

Manuscript submitted April 4, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nave, M.I., Kornev, K.G. Complexity of Products of Tungsten Corrosion: Comparison of the 3D Pourbaix Diagrams with the Experimental Data. Metall Mater Trans A 48, 1414–1424 (2017). https://doi.org/10.1007/s11661-016-3888-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3888-6

Keywords

Navigation