Skip to main content
Log in

Phase Stability for the Pd-Si System: First-Principles, Experiments, and Solution-Based Modeling

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The relative stabilities of the compounds in the binary Pd-Si system were assessed using first-principles calculations and experimental methods. Calculations of lattice parameters and enthalpy of formation indicate that \({\rm Pd}_{5}{\rm Si}{\text{-}}{\mu }\), \({\rm Pd}_{9}{\rm Si}_2{\text{-}}{\alpha }\), \({\rm Pd}_3{\rm Si}{\text{-}}{\beta }\), \({\rm Pd}_2{\rm Si}{\text{-}}{\gamma }\), and \({\rm PdSi}{\text{-}}{\delta }\) are the stable phases at 0 K (–273 °C). X-ray diffraction analyses (XRD) and electron probe microanalysis (EPMA) of the as-solidified and heat-treated samples support the computational findings, except that the \({\rm PdSi}{\text{-}}{\delta }\) phase was not observed at low temperature. Considering both experimental data and first-principles results, the compounds \({\rm Pd}_{5}{\rm Si}{\text{-}}{\mu }\), \({\rm Pd}_{9}{\rm Si}_{2}{\text{-}}{\alpha }\), \({\rm Pd}_{3}{\rm Si}{\text{-}}{\beta }\), and \({\rm Pd}_2{\rm Si}{\text{-}}{\gamma }\) are treated as stable phases down to 0 K (−273 °C), while the \({\rm PdSi}{\text{-}}{\delta }\) is treated as being stable over a limited range, exhibiting a lower bound. Using these findings, a comprehensive solution-based thermodynamic model is formulated for the Pd-Si system, permitting phase diagram calculation. The liquid phase is described using a three-species association model and other phases are treated as solid solutions, where a random substitutional model is adopted for Pd-fcc and Si-dia, and a two-sublattice model is employed for \({\rm Pd}_{5}{\rm Si}{\text{-}}{\mu }\), \({\rm Pd}_{9}{\rm Si}_2{\text{-}}{\alpha }\), \({\rm Pd}_3{\rm Si}{\text{-}}{\beta }\), \({\rm Pd}_2{\rm Si}{\text{-}}{\gamma }\), and \({\rm PdSi}{\text{-}}{\delta }\). Model parameters are fitted using available experimental data and first-principles data, and the resulting phase diagram is reported over the full range of compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Figure 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Enthalpy of mixing results in Ref. [38,39] mentioned in Ref. [11] were not implemented in the present analysis. The calorimeter measurements reported in Ref. [38] are for the Cu-In system rather than the Pd-Si system. In Ref. [39], the enthalpy of mixing for Pd-Si liquid was calculated from the partial enthalpies of Pd and Si using the Gibbs-Duhem relation rather than direct measurement. As authors mentioned in the report,[39] the calculated partial enthalpy of Si does not quite agree with the experimental ones. Therefore, instead of results in Ref. [39], we plotted the experimental data[35,37] measured more recently (by the same group as Ref. [39] in Figure 11(a).)

References

  1. T.M. Pollock: Integrated Computational Materials Engineering, The National Academies Press, Washington, DC, 2008

  2. S.H. Zhou, R.E. Napolitano, Acta Mater. 54, 831–840 (2006)

    Article  Google Scholar 

  3. S.H. Zhou, R.E. Napolitano, J. Phase Equilib. 28, 328–334 (2007)

    Article  Google Scholar 

  4. S.H. Zhou, E.R. Napolitano, Phys. Rev. B: 78, 148111 (2008)

    Google Scholar 

  5. K.F. Yao, R. Fang, Chin. Phys. Lett. 22, 1481–1483 (2005)

    Article  Google Scholar 

  6. H.S. Chen, L.C. Kimerling, J.M. Poate, W.L. Brown, Appl. Phys. Lett. 23, 461 (1978)

    Article  Google Scholar 

  7. S.T.J. Steinberg, A.E. Lord, Appl. Phys. Lett. 38, 878 (1981)

    Article  Google Scholar 

  8. H.Y. Ding, Y. Li, K.F. Yao, Chin. Phys. Lett. 27, 126101 (2010)

    Article  Google Scholar 

  9. N. Saunders, CALPHAD 9, 297–309 (1985)

    Article  Google Scholar 

  10. H.C. Baxi, T.B. Massalski, J. Phase Equilib. 12, 349–356 (1991)

    Article  Google Scholar 

  11. Z.M. Du, X.J. Yang, C.P. Guo, and T. Liu. Intermetallics, 2006, vol. 14, pp. 560–69

  12. R. Massara, P. Feschotte, J. Alloys Compd. 190, 249–254 (1993)

    Article  Google Scholar 

  13. P. Duhaj, P. Svec, Mater. Sci. Eng. A 226–228, 245–254 (1997)

    Article  Google Scholar 

  14. K.L. Lee, H.W. Kui, J. Mater. Res. 14, 3653–3662 (1999a)

    Article  Google Scholar 

  15. K.L. Lee, H.W. Kui, J. Mater. Res. 14, 3663–3667 (1999b)

    Article  Google Scholar 

  16. S.Y. Hong, W.H. Gue, H.W. Kui, J. Mater. Res. 14, 3668–3672 (1999)

    Article  Google Scholar 

  17. P. Mrafko, P. Duhaj, P. Svec, J. Non-Cryst, Solids 352, 5284–5286 (2006)

    Google Scholar 

  18. P. Chen, K.-F. Yao, F. Ruan, Philos. Mag. Lett. 87, 677–686 (2007)

    Article  Google Scholar 

  19. N.K. Rao, H. Winterhager, Trans. Indian Inst. Met. 10, 139–142 (1956)

    Google Scholar 

  20. G. Majni, F. Nava, G. Ottaviani, E. Danna, G. Leggieri, A. Luches, G. Celotti, J. Appl. Phys. 52, 4055–4061 (1981)

    Article  Google Scholar 

  21. J.A. Wysocki, P.E. Duwes, Metall. Mater. Trans. A 12, 1455–1460 (1981)

    Article  Google Scholar 

  22. H. Langer, E.Z. Wachetel, Z. Metallkd. 72, 769–775 (1981)

    Google Scholar 

  23. H. Langer, E.Z. Wachetel, Z. Metallkd. 74, 535–544 (1983)

    Google Scholar 

  24. A. Nylund, Acta Chem. Scand. 20, 2381–2386 (1966)

    Article  Google Scholar 

  25. S.V. Meschel, O.J. Kleppa, J. Alloys Compd. 274, 193–200 (1998)

    Article  Google Scholar 

  26. T.G. Chart, High Temp. High Press 5, 241–251 (1973)

    Google Scholar 

  27. A. Pasturel, P. Hicter, F. Cyrot-lackmann, Physica 120B, 247–250 (1984)

    Google Scholar 

  28. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758–1775 (1999)

    Article  Google Scholar 

  29. P.E. Blöchl, Phys. Rev. B 50, 17953–17979 (1994)

    Article  Google Scholar 

  30. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. B 77, 3865–3868 (1996)

    Google Scholar 

  31. MPC: Materials Preparation Center, Ames Laboratory, US DOE, Basic Energy Sciences, Ames, IA. http://www.mpc.ameslab.gov.

  32. A.T. Dinsdale, CALPHAD 4, 317–425 (1991)

    Article  Google Scholar 

  33. N.A. Vatolin, Y.S. Kozlov, E.A. Pastukhov, Russ Met. 5, 181–183 (1977)

    Google Scholar 

  34. I. Arpshofen, M.J. Pool, U. Gerling, F. Sommer, U. Gerling, E. Predel, B. Schultheiss, Z. Metallkde. 72, 776–781 (1981)

    Google Scholar 

  35. R. Castanet, R. Chastel, C. Bergman, J. Chem. Thermodyn. 15, 773–777 (1983)

    Article  Google Scholar 

  36. L. Topor, O.J. Kleppa, Z. Metallkd 77, 65–71 (1986)

    Google Scholar 

  37. R. Castanet, R. Chastel, Z. Metallkde. 78, 97–102 (1987)

    Google Scholar 

  38. T. Kang, R. Castanet, J. Less Common Metals 51, 125–135 (1977)

    Article  Google Scholar 

  39. C. Bergman, N. Kayama, M. Gilbert, R. Castanet, J.C. Mathieu, J. Phys. Coll. C8, 591–594 (1980)

    Google Scholar 

  40. M.S. Chandrasekharaiah, J. Alloy Phase Diagrams 14, 105–116 (1989)

    Google Scholar 

  41. B. Aronsson, A. Nylund, Acta Chem. Scand. 14, 1011–1018 (1960)

    Article  Google Scholar 

  42. W. Wopersnow, K. Schubert, Z. Metallkde. 67, 807–810 (1976)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. The research was performed at the Ames Laboratory, which is operated for the U.S. DOE by Iowa State University under contract No. DE-AC02-07CH11358.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph E. Napolitano.

Additional information

Manuscript submitted November 24, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S.H., Huo, Y. & Napolitano, R.E. Phase Stability for the Pd-Si System: First-Principles, Experiments, and Solution-Based Modeling. Metall Mater Trans A 47, 194–208 (2016). https://doi.org/10.1007/s11661-015-3206-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3206-8

Keywords

Navigation