Skip to main content

Advertisement

Log in

A Constitutive Equation Relating Composition and Microstructure to Properties in Ti-6Al-4V: As Derived Using a Novel Integrated Computational Approach

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

While it is useful to predict properties in metallic materials based upon the composition and microstructure, the complexity of real, multi-component, and multi-phase engineering alloys presents difficulties when attempting to determine constituent-based phenomenological equations. This paper applies an approach based upon the integration of three separate modeling approaches, specifically artificial neural networks, genetic algorithms, and Monte Carlo simulations to determine a mechanism-based equation for the yield strength of α+β processed Ti-6Al-4V (all compositions in weight percent) which consists of a complex multi-phase microstructure with varying spatial and morphological distributions of the key microstructural features. Notably, this is an industrially important alloy yet an alloy for which such an equation does not exist in the published literature. The equation ultimately derived in this work not only can accurately describe the properties of the current dataset but also is consistent with the limited and dissociated information available in the literature regarding certain parameters such as intrinsic yield strength of pure hexagonal close-packed alpha titanium. In addition, this equation suggests new interesting opportunities for controlling yield strength by controlling the relative intrinsic strengths of the two phases through solid solution strengthening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Allison J. JOM 2011;63:15.

    Article  Google Scholar 

  2. Patel P. MRS bulletin 2011;36:964.

    Article  Google Scholar 

  3. White A. MRS Bulletin 2012;37:715.

    Article  Google Scholar 

  4. Ji S, Wang Q, Xia B, Marcotte D. Journal of Structural Geology 2004;26:1377.

    Article  Google Scholar 

  5. Wang M, Pan N. Materials Science and Engineering: R: Reports 2008;63:1.

    Article  Google Scholar 

  6. Allison J, Li M, Wolverton C, Su X. JOM 2006;58:28.

    Article  Google Scholar 

  7. Kozar R, Suzuki A, Milligan W, Schirra J, Savage M, Pollock T. Metall Mater Trans A 2009;40:1588.

    Article  Google Scholar 

  8. Collins PC, Fraser HL. ASM Handbook: Fundamentals of modeling for metals processing 2009:377.

    Google Scholar 

  9. Lütjering G, Williams JC. Titanium, 2nd edn., Springer, Berlin, 2003.

    Book  Google Scholar 

  10. Kar S, Searles T, Lee E, Viswanathan G, Fraser H, Tiley J, Banerjee R. Metall Mater Trans A 2006;37:559.

    Article  Google Scholar 

  11. Kapoor R, Pal D, Chakravartty J. Journal of Materials Processing Technology 2005;169:199.

    Article  Google Scholar 

  12. Topçu İB, Sarıdemir M. Construction and Building Materials 2008;22:532.

    Article  Google Scholar 

  13. Cai J, Cottis R, Lyon S. Corros. Sci. 1999;41:2001.

    Article  Google Scholar 

  14. Bhadeshia H. ISIJ Int. 1999;39:966.

    Article  Google Scholar 

  15. Bhadeshia H. Statistical Analysis and Data Mining 2009;1:296.

    Article  Google Scholar 

  16. Bhadeshia H, MacKay D, Svensson L-E. Mater Sci Technol 1995;11:1046.

    Article  Google Scholar 

  17. MacKay DJ. Neural. Comput. 1992;4:448.

    Article  Google Scholar 

  18. Capdevila C, García Caballero F, García de Andrés C. ISIJ Int. 2002;42:894.

    Article  Google Scholar 

  19. Gavard L, Bhadeshia H, MacKay D, Suzuki S. Mater Sci Technol 1996;12:453.

    Article  Google Scholar 

  20. Collins PC, Koduri S, Welk B, Tiley J, Fraser HL. Metall Mater Trans A 2013;44:1441.

    Article  Google Scholar 

  21. Cool T, Bhadeshia H, MacKay D. Mater. Sci. Eng. A 1997;223:186.

    Article  Google Scholar 

  22. Pak J, Jang J, Bhadeshia H, Karlsson L. Mater. Manuf. Processes 2008;24:16.

    Article  Google Scholar 

  23. Brun F, Yoshida T, Robson J, Narayan V, Bhadeshia H, MacKay D. Mater Sci Technol 1999;15:547.

    Article  Google Scholar 

  24. Fujii H, Mackay D, Bhadeshia H. ISIJ Int. 1996;36:1373.

    Article  Google Scholar 

  25. Kashyap B, Tangri K. Acta Mater. 1997;45:2383.

    Article  Google Scholar 

  26. Tang J, Huang B, He Y, Liu W, Zhou K, Wu A. Mater. Res. Bull. 2002;37:1315.

    Article  Google Scholar 

  27. Paradkar A, Kamat S, Gogia A, Kashyap B. Mater. Sci. Eng. A 2009;520:168.

    Article  Google Scholar 

  28. Zhao M-C, Yin F, Hanamura T, Nagai K, Atrens A. Scripta Mater. 2007;57:857.

    Article  Google Scholar 

  29. Tiley J, Searles T, Lee E, Kar S, Banerjee R, Russ J, Fraser H. Mater. Sci. Eng. A 2004;372:191.

    Article  Google Scholar 

  30. Narayan V, Abad R, Lopez B. ISIJ Int. 1999;39:999.

    Article  Google Scholar 

  31. Yoshitake S, Narayan V, Harada H. ISIJ Int. 1998;5:495.

    Article  Google Scholar 

  32. Sourmail T, Bhadeshia H, MacKay DJ. Mater Sci Technol 2002;18:655.

    Article  Google Scholar 

  33. Cottrell G, Kemp R, Bhadeshia H, Odette G, Yamamoto T. J. Nucl. Mater. 2007;367:603.

    Article  Google Scholar 

  34. Sterjovski Z, Nolan D, Carpenter K, Dunne D, Norrish J. Journal of Materials Processing Technology 2005;170:536.

    Article  Google Scholar 

  35. Malinov S, Sha W, McKeown J. Computational Materials Science 2001;21:375.

    Article  Google Scholar 

  36. Shabani MO, Mazahery A. J. Mater. Sci. 2011;46:6700.

    Article  Google Scholar 

  37. J.S. Tiley: Ph.D. Thesis, The Ohio State University, 2003.

  38. P.C. Collins, S. Kar, T. Searles, S. Koduri, and G.B. Viswanathan, Frontiers in the Design of Materials (FDM-NMD-ATM), India, 2006.

  39. Dimitriu R, Bhadeshia H, Fillon C, Poloni C. Mater. Manuf. Processes 2008;24:10.

    Article  Google Scholar 

  40. Ono N, Nowak R, Miura S. Mater. Lett. 2004;58:39.

    Article  Google Scholar 

  41. Gypen L, Deruyttere A. J. Mater. Sci. 1977;12:1028.

    Article  Google Scholar 

  42. Gypen LA, Deruyttere A. J. Mater. Sci. 1977;12:1034.

    Article  Google Scholar 

  43. Koike M, Hummel SK, Ball JD, Okabe T. The Journal of prosthetic dentistry 2012;107:393.

    Article  Google Scholar 

  44. Morais LS, Serra GG, Muller CA, Andrade LR, Palermo EF, Elias CN, Meyers M. Acta Biomaterialia 2007;3:331.

    Article  Google Scholar 

  45. Yapici GG, Karaman I, Maier HJ. Mater. Sci. Eng. A 2006;434:294.

    Article  Google Scholar 

  46. Geetha M, Singh A, Asokamani R, Gogia A. Prog Mater Sci 2009;54:397.

    Article  Google Scholar 

  47. Meyers MA, Chawla KK. Mechanical Behavior of Materials, 2nd edn., Cambridge University Press, Cambridge; 2009.

    Google Scholar 

  48. Anderson E, Jillson D, Dunbar S. Trans AIME 1953;197:1191.

    Google Scholar 

  49. http://engineering.dartmouth.edu/defmech/.

  50. S. Ankem, G. Scarr, and I. Caplan, Sixth World Conference on Titanium. I, 1988, pp. 265–68.

  51. Williams J, Baggerly R, Paton N. Metall Mater Trans A 2002;33:837.

    Article  Google Scholar 

  52. Hill R. Math. Proc. Cambridge Philos. Soc. 1979;85:179.

    Article  Google Scholar 

  53. Wu HH, Trinkle DR. Phys. Rev. Lett. 2011;107:045504.

    Article  Google Scholar 

  54. Foreman A, Makin M. Can. J. Phys. 1967;45:511.

    Article  Google Scholar 

  55. Communications with Viswanathan and Fraser, 2008.

  56. Savage M, Tatalovich J, Zupan M, Hemker K, Mills M. Mater. Sci. Eng. A 2001;319:398.

    Article  Google Scholar 

  57. Savage M, Tatalovich J, Mills M. Philos Mag 2004;84:1127.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the US Air Force Research Laboratory, ISES Contract No. FA 8650-08-C-5226, the encouragement to pursue this integrated approach by members of the industrial advisory board of the Center for Advanced Non-Ferrous Structural Alloys, which is a joint industry-university center between the Colorado School of Mines and the University of North Texas (NSF Award No. 1134873); and the Center for Advanced Research and Testing at the University of North Texas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter C. Collins.

Additional information

Manuscript submitted on October 1, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghamarian, I., Samimi, P., Dixit, V. et al. A Constitutive Equation Relating Composition and Microstructure to Properties in Ti-6Al-4V: As Derived Using a Novel Integrated Computational Approach. Metall Mater Trans A 46, 5021–5037 (2015). https://doi.org/10.1007/s11661-015-3072-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3072-4

Keywords

Navigation