Skip to main content

Advertisement

Log in

Room Temperature Dynamic Strain Aging in Ultrafine-Grained Titanium

  • Symposium: Dynamic Behavior of Materials VI
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Dynamic strain aging (DSA) in coarse-grained (CG) titanium is usually observed at intermediate to high temperatures 473 K to 973 K (200 °C to 700 °C) and is characterized by serrations in the stress vs strain curves. In the present work, despite the absence of apparent serrations, ultrafine-grained titanium (UFG Ti) undergoes DSA at room temperature, exhibited through an abnormal increase in the elastic limit and negative strain rate sensitivity. This effect is observed at 293 K (20 °C) in the strain rate interval of 10−4 to 10−2 s−1, and at 203 K (−70 °C) and 373 K (100 °C) in a distinct strain rate range. Based on a calculated activation energy of 17.3 kJ/mol and microstructural observations by transmission electron microscopy, it is proposed that the dominant mechanism for DSA in UFG Ti involves interstitial solutes interacting with dislocations emitted from grain boundaries. The interstitials migrate from the grain boundaries along dislocation lines bowing out as they are emitted from the boundaries, a mechanism with a low calculated activation energy which is comparable with the experimental measurements. The dislocation velocities and interstitial diffusion along the dislocation cores are consistent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F.D. Rosi and E.C. Perkin: ASM. 1953. vol. 45. pp. 972–92.

    Google Scholar 

  2. W.R. Kiessel and M.J. Sinnott: AIME. 1953. vol. 197. pp. 331–338.

    Google Scholar 

  3. R.N. Orava, G. Stone and H. Conrad: Trans ASM. 1966. vol. 59. pp. 171–84.

    Google Scholar 

  4. H. Conrad: J. Phys. 1967. vol. 45. pp. 581–90.

    Google Scholar 

  5. N.G. Turner and W.T. Roberts: J. Less-Common Metal. 1968. vol. 16. pp. 37–44.

    Article  Google Scholar 

  6. R.L. Jones and H. Conrad: Scripta Metall. 1968. vol. 2 pp. 239–42.

    Article  Google Scholar 

  7. S.N. Monteiro, A.T. Santhanam, and R.E. Reed-Hill: The Science, Technology and Application of Titanium, Pergamon Press, Oxford and New York, 1970; pp. 503–16.

    Book  Google Scholar 

  8. A.T. Santhanam, V. Ramachandran and R.E. Reed-Hill: Metall. Trans. 1970. vol. 1. pp. 2593–98.

    Google Scholar 

  9. A.T. Santhanam and R.E. Reed-Hill: Scripta Metall. 1970. vol. 4. pp. 529–31.

    Article  Google Scholar 

  10. H. Conrad and R.L. Jones: in The Science, Technology and Application of Titanium, Pergamon Press, Oxford and New York, 1970; pp. 489-–501.

    Book  Google Scholar 

  11. A.T. Santhanam and R. E.Reed-Hill: Metall. Trans. 1971.vol. 2. pp. 2619–22.

    Article  Google Scholar 

  12. A. Garde, A.T. Santhanam and R.E. Reed-Hill. Acta Metall. 1972. vol. 20. pp. 215–22.

    Article  Google Scholar 

  13. M. Doner and H. Conrad: Metall. Trans. 1973. vol. 4. pp. 2809–17.

    Article  Google Scholar 

  14. S.N. Monteiro and R.E. Reed-Hill: Metall. Trans. 1973. vol. 4. pp. 1011–15.

    Article  Google Scholar 

  15. H. Conrad, M. Doner, and B. de Meester: Titanium Science and Technology, Plenum Press, New York, 1973, pp. 965–69.

    Google Scholar 

  16. K. Okazaki and H. Conrad: Acta Metall. 1973. vol. 21. pp.1117–29.

    Article  Google Scholar 

  17. N. M. Madhava and R. W. Armstrong: Metall. Trans. 1974. vol. 5: pp. 1517–19.

    Article  Google Scholar 

  18. R. E. Reed-Hill: Metall. Rev. 1974. vol. 2. pp. 218–40.

    Google Scholar 

  19. C. Yin, M. Döner and H. Conrad: Metall. Trans. A 1975. vol. 6. pp.1901–08.

    Article  Google Scholar 

  20. H. Conrad, B. de Meester, M. Doner, and K. Okazaki: Plenum Press, New York, 1975, pp. 1–45.

  21. H. Sasano and H. Kimura In: 3rd International Conference on Titanium Alloys, paper V-4, 1976; p. 117-126, Moscow.

  22. H. Conrad: Prog. Mater. Sci. 1981. vol. 26. pp. 123–403.

    Article  Google Scholar 

  23. C.P. Venugopal, S. Venugopal and V. Seetharaman: J. Mater. Process. Tech. 1990. vol.21. pp. 91–101.

    Article  Google Scholar 

  24. S. Nemat-Nasser, W.G. Guo and J.Y.Cheng: Acta Materialia. 1999. vol. 47. pp. 3705–20.

    Article  Google Scholar 

  25. S.H. Chon, T.N. Kim and J. K. Park: Metals. Mater. Intl. 2004. vol. 10. pp. 567–73.

    Article  Google Scholar 

  26. Y.H. Lin, K.H Hu, F.H. Kao, S.H. Wang, J.R. Yang and C.K. Lin: Mater. Sci. Eng. A 2011.vol. 528. pp. 4381–89.

    Article  Google Scholar 

  27. V. V. Stolyarov, Y.T. Zhu, T.C. Lowe and R.Z. Valiev: Mater. Sci. Eng. A. 2001. vol. 303. pp. 82–89.

    Article  Google Scholar 

  28. D. Jia, Y.M. Wang, K.T. Ramesh, E. Ma, Y.T. Zhu and R.Z. Valiev: Appl. Phys. Lett. 2001.vol. 79. pp. 611–13.

    Article  Google Scholar 

  29. A.V. Sergueeva, V.V. Stolyarov, R.Z. Valiev and A.K. Mukherjee: Scripta Mater. 2001. vol. 45. pp. 747–52.

    Article  Google Scholar 

  30. R.Z. Valiev, A.V. Sergueeva and A.K. Mukherjee: Scripta Mater. 2003. vol. 49. pp. 669–74.

    Article  Google Scholar 

  31. V. V. Stolyarov, Y.T. Zhu, I.V. Alexandrov and R.Z. Valiev: Mater. Sci. Eng. A. 2003. vol. 343. pp. 43–50.

    Article  Google Scholar 

  32. X. Zao, W. Fu, X. Yang and T.G. Langdon: Scripta Mater. 2008.vol. 59. pp.542–45.

    Article  Google Scholar 

  33. I. P. Semenova, R.Z. Valiev, E.B. Yakushina, G.H. Salimgareeva and T.C. Lowe: J. Mater. Sci. 2008.vol. 43. pp.7354–59.

    Article  Google Scholar 

  34. G. Purcek, O. Saray, O. Kul, I. Karaman, G.G. Yapici, M. Haouaoui and H.J. Maier: Mater. Sci. Eng. A. 2009. vol. 517. pp. 97–104.

    Article  Google Scholar 

  35. X. Zhao, X. Yang, X. Liu, X. Wang and T.G. Langdon: Mater. Sci. Eng. A. 2010. vol. 527. pp. 6335–39.

    Article  Google Scholar 

  36. A.A. Mendes Filho, C.A. Rovere, S.E. Kuri, V.L. Sordi and M. Ferrante: Revista Materia. 2010. vol. 15. pp. 286–92.

    Article  Google Scholar 

  37. G. Purcek, G.G. Yapici, I. Karaman and H.J. Maier: Mater. Sci. Eng. A. 2011. vol. 528. pp. 2303–08.

    Article  Google Scholar 

  38. I. Sabirov, M.T. Perez-Prado, J.M. Molina-Alderegia, I.P. Semenova, G.Kh. Salimgareeva and R.Z.Valiev: Scripta Mater. 2011. vol. 64.pp.69–72.

    Article  Google Scholar 

  39. Y. Zhang, R.B. Figueiredo, S.N. Alhajeri, J.T. Wang, N. Gao and T.G. Langdon: Mater. Sci. Eng. A. 2011. vol. 528. pp. 7708–14.

    Article  Google Scholar 

  40. V.L. Sordi, M. Ferrante, M. Kawasaki and T.G. Langdon. J. Mater. Sci. 2012. vol. 47. pp. 7870–76.

    Article  Google Scholar 

  41. A.A. Mendes Filho, V.L. Sordi and M. Ferrante: Mater. Res. 2012. vol. 15. pp. 27–31.

    Article  Google Scholar 

  42. W. Blum, Y.J. Li and F. Breutinger: Mater Sci. Eng. A. 2006.vol. 462. pp. 275–78.

    Article  Google Scholar 

  43. Y.M. Wang, J.Y. Huang, T. Jiao, Y.T. Zhu and A.V. Hamza: J. Mater. Sci. 2007. vol. 42. pp. 1751–56.

    Article  Google Scholar 

  44. X. Liu, X. Zhao and X. Yang: Mater. Sci. Forum. 2011. vol. 667-669. pp.707–12.

    Google Scholar 

  45. S.N. Monteiro, F.P.D. Lopes, E.A. Carvalho and C.N. Elias: J. Mater. Res. Technol. 2012. vol. 1. pp. 200–02.

    Article  Google Scholar 

  46. V.V. Latysh, G. Krallics, I. Alexandrov and I. Fodor: Curr. Appl. Phys. 2006. vol. 6. pp. 262–66.

    Article  Google Scholar 

  47. R.Z. Valiev, I.P. Semenova, V.V. Latysh, A.V. Shcherbakov and E.B. Yakushina: Nanotech Russia .2008. vol. 3. pp. 593–601.

    Article  Google Scholar 

  48. R.Z. Valiev, I.P. Semenova, V.V. Latysh, H. Rack, T.C. Lowe, J. Petruželka, L. Dluhoš, D. Hrušák and J. Sochová : Adv. Eng. Mater. 2008. vol. 10. pp. 15–B17.

    Article  Google Scholar 

  49. J.W. Park, Y.J. Kim, C.H. Park, D.H. Lee, Y.G. Ko, J.H. Jang and C.S. Lee: Acta Materialia. 2009. vol. 5. pp. 3272–80.

    Google Scholar 

  50. Y. Estrin, C. Kasper, S. Diederichs and R. Lapovok: J. Biomed. Mater Res. 2009. vol. 90A. pp.1239–42.

    Article  Google Scholar 

  51. V.K. Truong, S. Rundell, R. Lapovok, Y. Estrin, J.Y. Wang, C.C. Berndt, D.G. Barnes, C.J. Fluke, R.J. Crawford, E.P. Ivanova: Appl. Microbiol. Biotech. 2009. vol. 83. pp. 925–37.

    Article  Google Scholar 

  52. C.N. Elias, M.A. Meyers, R.Z. Valiev and S.N. Monteiro: J. Mater. Res. Technol. 2013. vol. 2(4). pp. 340–50.

    Article  Google Scholar 

  53. C. Xu, S. Schroeder, P.B. Berbon and T.G. Langdon: Acta Materialia. 2010. vol. 58. pp. 1379–86.

    Article  Google Scholar 

  54. R.Z. Valiev and T.G. Langdon: Metall. Mater.Trans. A. 2011. vol. 42. pp. 2942–52.

    Article  Google Scholar 

  55. American Society for Testing and Materials – ASTM International, Standard specification for titanium and titanium alloy bars and billets, B348-11, 2011.

  56. American Society for Testing and Materials – ASTM International, Standard test methods for determination of hydrogen in titanium and titanium alloys by inert gas fusion thermal conductivity/infrared detection method, E1447-09, 2009.

  57. American Society for Testing and Materials – ASTM International, Standard practice for microetching metals and alloys, E407-07, 2007.

  58. J. Min, L.G. Hector Jr., J. Lin, Jon T. Carter, A.K. Sachdev: Int. J. Plast. 2014. vol. 57. pp. 52–76.

    Article  Google Scholar 

  59. A. Seeger: Z. Naturforschung, 1960. vol. 8. p. 128.

    Google Scholar 

  60. M.A. Meyers and K.K. Chawla: Mechanical Behavior of Materials, 2nd edn, Cambridge University Press, Cambridge, 2009, p. 497.

    Google Scholar 

  61. A. H. Cottrell: Phil. Mag. 1953. vol. 44. pp. 829–32.

    Article  Google Scholar 

  62. Y.T. Zhu, J.Y. Huang, J. Gubicza, T. Ungár, Y.M. Wang, E. Ma and R.Z. Valiev: J. Mater. Res. 2003. vol. 18. pp.1908–17.

    Article  Google Scholar 

  63. P. Lejcek: Grain Boundary Segregation in Metals, 1st edition, Springer, Berlin 2010, p 2.

    Book  Google Scholar 

  64. J. C. M. Li: Trans. TMS-AIME, 1963, vol. 227, p. 239.

    Google Scholar 

  65. M.A. Meyers, A. Mishra and D.J. Benson: Prog. Mater. Sci. 2006. vol. 51. pp. 427–556.

    Article  Google Scholar 

  66. R.Z. Valiev, T.G. Langdon: Prog. Mater. Sci. 2006. vol. 51. pp. 881–981.

    Article  Google Scholar 

  67. S. Zhao, C. Meng, F. Mao, W. Hu, and G. Gottstein: Acta. Mater. vol. 76. pp. 54–67.

  68. R. T. De Hoff and F. N. Rhines, Quantitative Microscopy, McGraw-Hill, NY, 1968.

    Google Scholar 

  69. T. Tanaka, H. Conrad: Acta Metallurgica, 1971. vol.19. pp. 1001–08.

    Article  Google Scholar 

  70. A. Van Den Beukel, U. F. Kocks: Acta Metallurgic. 1982. vol. 30. pp. 1027–34.

    Article  Google Scholar 

  71. W.A. Curtin, D.L. Olmsted, L.G. Hector: Nature Materials. 2006, vol.5. pp. 875–80.

    Article  Google Scholar 

  72. A. Ishii, J. Li, S. Ogata: PLoS One. 2013. vol. 8. p. e60586.

    Article  Google Scholar 

  73. C.E. Van Orstrand and F.P. Dewey: "Preliminary Report on the Diffusion of Solids", USGS Professional Paper, 1915. pp. 83–96.

  74. P.G. Shewmon: Diffusion in solids, 2nd edition, Wiley, Hoboken 1989. p. 199.

    Google Scholar 

Download references

Acknowledgments

The support by the Department of Energy under UC Labs Grant as well as by the Brazilian agencies CNPq, CAPES, and FAPERJ is acknowledged. Discussions with and guidance by Prof. H. Conrad are gratefully appreciated. Norm Olson provided valuable collaboration in TEM analyses. Prof. Z. Valiev generously provided the materials used in this investigation, which would not have been possible without his help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc A. Meyers.

Additional information

Manuscript submitted January 22, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, F.P.D., Lu, C.H., Zhao, S. et al. Room Temperature Dynamic Strain Aging in Ultrafine-Grained Titanium. Metall Mater Trans A 46, 4468–4477 (2015). https://doi.org/10.1007/s11661-015-3061-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3061-7

Keywords

Navigation