Skip to main content
Log in

Discontinuous Dynamic Recrystallization of Inconel 718 Superalloy During the Superplastic Deformation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The superplastic behavior of Inconel 718 superalloy with particular emphasis on the microstructural evolution has been systematically investigated through tensile tests at the strain rate of 10−3 s−1 and the temperatures ranging from 1223 K to 1253 K (950 °C to 980 °C). Its elongations exceeded 300 pct under all of the experimental conditions and peaked a maximum value of 520 pct at 1223 K (950 °C). Moreover, the stress reached the top value at the strain of 0.3, and then declined until the tensile failure. In addition, we have found that the grain size reduced after deformation while the δ phase precipitation increased. Microstructural evolution during the superplasticity was characterized via transmission electron microscope, and the randomly distributed dislocation, dislocation network, dislocation arrays, low-angled subgrains, and high-angled recrystallized new grains were observed in sequence. These new grains were found to nucleate at the triple junction, twin boundary, and near the δ phase. Based on these results, it is deemed that the discontinuous dynamic recrystallization occurred as the main mechanism for the superplastic deformation of Inconel 718 alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T.G. Nieh, J. Wadsworth and O.D. Sherby: Superplasticity in metals and ceramics, Cambridge University Press, New York, 2005, p. 1.

    Google Scholar 

  2. R. C. Gifkins: Metall. Trans. A, 1976, vol. 7, pp. 1225-1232.

    Article  Google Scholar 

  3. M.F. Ashby and R. A. Verrall: Acta Metall., 1976, vol. 21, pp. 149–163.

    Article  Google Scholar 

  4. A. Ball and M.M. Hutchison: Mater. Sci. Technol., 1969, vol. 3, pp. 1-7.

    Google Scholar 

  5. A.K. Mukherjee: Mater. Sci. Eng., 1971, vol. 8, pp. 83-89.

    Article  Google Scholar 

  6. J.R. Spingarn and W.D. Nixa: Acta Metall., 1978, vol. 26, pp. 1389-1398.

    Article  Google Scholar 

  7. R. L. Coble: J. Appl. Phys., 1963, vol. 34, pp. 1679-1682.

    Article  Google Scholar 

  8. W.J. Kim, I.B. Park: Scripta Mater., 2013, vol. 68, pp. 179-182.

    Article  Google Scholar 

  9. T. Lee, Y. Park, W. Kim: Mater. Sci. Eng. A, 2013, vol. 580, pp. 133-141.

    Article  Google Scholar 

  10. O. Sherby, J. Weertman: Acta Metall., 1979, vol. 27, pp. 387-400.

    Article  Google Scholar 

  11. A. Alhamidi, Z. Horita: Mater. Sci. Eng. A, 2015, vol. 622, pp. 139-145.

    Article  Google Scholar 

  12. Z.Y. Ma, F.C. Liu, R.S. Mishra: Acta Mater., 2010, vol. 58, pp. 4693-4704.

    Article  Google Scholar 

  13. G. Rai, N.J. Grant: Metall. Trans. A, 1983, vol. 14A, pp. 1451-1458.

    Article  Google Scholar 

  14. J.H. Han, F.A. Mohamed: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3969-3978.

    Article  Google Scholar 

  15. A. Mohan, W. Yuan, R.S. Mishra: Mater. Sci. Eng. A, 2013, vol. 562, pp. 69-76.

    Article  Google Scholar 

  16. W.J. Kim, S.W. Chung, C.S. Chung, D. Kum: Acta Mater., 2001, vol. 49, pp. 3337-3345.

    Article  Google Scholar 

  17. R. Panicker, A.H. Chokshi, R.K. Mishra, R. Verma, P.E. Krajewski: Acta Mater., 2009, vol. 57, pp. 3683-3693.

    Article  Google Scholar 

  18. Y. Wang, J. Huang: Metall. Mater. Trans. A, 2004, vol. 35, pp. 555-562.

    Article  Google Scholar 

  19. X.J. Zhu, M. J. Tan and W. Zhou: Scripta Mater., 2005, vol. 52, pp. 651-655.

    Article  Google Scholar 

  20. L. Ceschini, G. P. Cammarota, G. L. Garagnani, F. Persiani and A. Afrikatnov: Mater. Sci. Forum., 1994, vol. 170-172, pp. 351-358.

    Article  Google Scholar 

  21. M.W. Mahoney and R. Crooks: Superplasticity in Aerospace, pp. 331-344, The Metallurgical Society, Phoenix, 1988.

    Google Scholar 

  22. X. Han, L. Wu, H. Xia, R. Liu, S. Wang and Z. Chen: J. Mater. Process. Technol., 2003, vol. 137, pp. 17-20.

    Article  Google Scholar 

  23. H.J. Lu, X.C. Jia, K.F. Zhang and C.G. Yao: Mater. Sci. Eng. A, 2002, vol. 326, pp. 382–385.

    Article  Google Scholar 

  24. F.S. Qu, Z. Lu, F. Xing and K. F. Zhang: Mater. & Desi., 2012, vol. 39, pp. 151-161.

    Article  Google Scholar 

  25. S. Medeiros, Y. Prasad, W.G. Frazier, R. Srinivasan: Mater. Sci. Eng. A, 2000, vol. 293, pp. 198-207.

    Article  Google Scholar 

  26. Y. Huang and P. L. Blackwell: Mater. Sci. Technol. 2003, vol. 19, pp. 461-466.

    Article  Google Scholar 

  27. Y. Wang, W.Z. Shao, L. Zhen, X.M. Zhang: Mater. Sci. Eng. A, 2008, vol. 486, pp. 321-332.

    Article  Google Scholar 

  28. F.-L. Sui, L.-X. Xu, L.-Q. Chen, X.-H. Liu: J. Mater. Process. Technol., 2011, vol. 211, pp. 433-440.

    Article  Google Scholar 

  29. R.C. Reed: The Superalloys, Fundamentals and Applications, Cambridge University Press, Cambridge, U.K., 2006, pp. 1-2.

    Book  Google Scholar 

  30. S. Azadian, L.-Y. Wei, R. Warren: Mater. Characterization, 2003, vol. 53, pp. 7-16.

    Article  Google Scholar 

  31. D. Jorge-Badiola, A. Iza-Mendia and I. Gutiérrea: J. Microscopy, 2007, vol. 228, pp. 373-383.

    Article  Google Scholar 

  32. A.K. Mukhopadhyay, A. Kumar, S. Raveendra and I. Samajdar: Scripta Mater., 2011, vol. 64, pp. 386-389.

    Article  Google Scholar 

  33. H.J.Lv, C. Yao, X. Jia, K. Zhang: Chinese J. Mech. Eng., 2003, vol. 16, pp. 72-74.

    Article  Google Scholar 

  34. M. Urdanpilleta, J.M. Martinez-Esnaola and J.G. Sevillano: Meter. Trans. A, 2005, vol. 46, pp. 1711-1719.

    Article  Google Scholar 

  35. W.-Y. Kim, S. Hanada and T. Takasugi: Acta Mater., 1997, vol. 46, pp. 3593-3604.

    Article  Google Scholar 

  36. Y. Huang and T.G. Langdon: J. Mater. Sci., 2007, vol. 42, pp. 421-427.

    Article  Google Scholar 

  37. D. Jiang and D. Lin: Mater. Lett., 2002, vol. 57, pp. 747–752.

    Article  Google Scholar 

  38. Y. Wang, L. Zhen, W. Shao, L. Yang, X. Zhang: J. Alloys Comp.,2009, vol. 474, pp. 341-346.

    Article  Google Scholar 

  39. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., p. 485, Elsevier, Oxford, 2004.

    Google Scholar 

  40. X. Du, B. Wu: Metall. Mater. Trans. A, 2005, vol. 36, pp. 3343-3351.

    Article  Google Scholar 

  41. J.C. Tan and M.J. Tan: Mater. Sci. Eng. A, 2003, vol. 339, pp. 81-89.

    Article  Google Scholar 

  42. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura and J. Jonas: Prog. Mater. Sci., 2014, vol. 60, pp. 130-207.

    Article  Google Scholar 

  43. E. Loria: Superalloys 718, 625, 706 and Various Derivatives, TMS, Pennsylvania, 1994, pp. 303.

    Google Scholar 

  44. H. Yuan, W.C. Liu: Mater. Sci. Eng. A, 2005, vol. 408, pp. 281-289.

    Article  Google Scholar 

  45. S.-H. Zhang, H.-Y. Zhang, M. Cheng: Mater. Sci. Eng. A, 2011. Vol. 528, pp. 6253-6258.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenru Sun.

Additional information

Manuscript submitted December 3, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Qi, F., Hua, P. et al. Discontinuous Dynamic Recrystallization of Inconel 718 Superalloy During the Superplastic Deformation. Metall Mater Trans A 46, 4276–4285 (2015). https://doi.org/10.1007/s11661-015-3031-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3031-0

Keywords

Navigation