Skip to main content
Log in

How TEM Projection Artifacts Distort Microstructure Measurements: A Case Study in a 9 pct Cr-Mo-V Steel

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Morphological data obtained from two-dimensional (2D) and three-dimensional (3D) transmission electron microscopy (TEM) observations were compared to assess the effects of TEM projection errors for submicron-size precipitates. The microstructure consisted of M23C6 carbides in a 9 pct Cr-Mo-V heat resistant steel before and after exposure to creep conditions. Measurements obtained from about 800 carbides demonstrate that particle size and spacing estimates made from 2D observations overestimate the more accurate values obtained from 3D reconstructions. The 3D analysis also revealed the M23C6 precipitates lengthen anisotropically along lath boundary planes, suggesting that coarsening during the early stage of creep in this alloy system is governed by grain boundary diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D. Rojas, J. Garcia, O. Prat, G. Sauthoff and A. R. Kaysser-Pyzalla, Materials Science and Engineering: A 2011, vol. 528, pp. 5164-5176.

    Article  Google Scholar 

  2. Y. Wang, K. H. Mayer, A. Scholz, C. Berger, H. Chilukuru, K. Durst and W. Blum, Mat Sci Eng a-Struct 2009, vol. 510-11, pp. 180-184.

    Article  Google Scholar 

  3. D. Rojas, J. Garcia, O. Prat, C. Carrasco, G. Sauthoff and A. R. Kaysser-Pyzalla, Materials Science and Engineering: A 2010, vol. 527, pp. 3864-3876.

    Article  Google Scholar 

  4. F. Abe: in Advanced Steels, Y. Weng, D. Han, and G. Yong, ed., Springer, Metallurgical Industry Press, Berlin, 2011, pp. 409–422.

  5. V. Dudko, A. Belyakov, D. Molodov, and R. Kaibyshev: Metall. Mater. Trans. A, 2013, vol. 44, pp. 162–172.

  6. P. J. Ennis, A. ZielinskaLipiec, O. Wachter and A. CzyrskaFilemonowicz, Acta Materialia 1997, vol. 45, pp. 4901-4907.

    Article  Google Scholar 

  7. A. Kipelova, R. Kaibyshev, A. Belyakov and D. Molodov, Mat Sci Eng a-Struct 2011, vol. 528, pp. 1280-1286.

    Article  Google Scholar 

  8. F. Abe, Mat Sci Eng a-Struct 2004, vol. 387, pp. 565-569.

    Article  Google Scholar 

  9. F. Abe, T. Horiuchi, M. Taneike and K. Sawada, Mat Sci Eng a-Struct 2004, vol. 378, pp. 299-303.

    Article  Google Scholar 

  10. H.G. Armaki, R. Chen, K. Maruyama, and M. Igarashi, Metall. Mater. Trans. A 2011, vol. 42, pp. 3084–94.

    Article  Google Scholar 

  11. Fujio Abe, Science and Technology of Advanced Materials 2008, vol. 9, p. 013002.

    Article  Google Scholar 

  12. K. Kaneko, S. Matsumura, A. Sadakata, K. Fujita, W. J. Moon, S. Ozaki, N. Nishimura and Y. Tomokiyo, Mat Sci Eng a-Struct 2004, vol. 374, pp. 82-89.

    Article  Google Scholar 

  13. H. Friedrich, C.J. Gommes, K. Overgaag, J.D. Meeldijk, W.H. Evers, B. de Nijs, M.P. Boneschanscher, P.E. de Jongh, A.J. Verkleij, K.P. de Jong, A. van Blaaderen, and D. Vanmaekelbergh, Nano Lett 2009, vol. 9, pp. 2719-2724.

    Article  Google Scholar 

  14. Niven Monsegue, Xin Jin, Takuya Echigo, Ge Wang and Mitsuhiro Murayama, Microsc Microanal 2012, vol. 18, pp. 1362-1367.

    Article  Google Scholar 

  15. C. J. Gommes, K. de Jong, J. P. Pirard and S. Blacher, Langmuir 2005, vol. 21, pp. 12378-12385.

    Article  Google Scholar 

  16. P.D. Jablonski, C.J. Cowen, J.A. Hawk, G.R. Holcomb: in 25th Annual Fossil Energy Materials Conference, 2011, April 26–28, Portland, OR.

  17. J. C. Gonzalez, J. C. Hernandez, M. Lopez-Haro, E. del Rio, J. J. Delgado, A. B. Hungria, S. Trasobares, S. Bernal, P. A. Midgley and J. J. Calvino, Angew Chem Int Edit 2009, vol. 48, pp. 5313-5315.

    Article  Google Scholar 

  18. I. M. Lifshitz and V. V. Slyozov, Journal of Physics and Chemistry of Solids 1961, vol. 19, pp. 35-50.

    Article  Google Scholar 

  19. O. Prat, J. Garcia, D. Rojas, C. Carrasco and A. R. Kaysser-Pyzalla, Materials Science and Engineering: A 2010, vol. 527, pp. 5976-5983.

    Article  Google Scholar 

  20. A. Gustafson and M. Hattestrand, Mat Sci Eng a-Struct 2002, vol. 333, pp. 279-286.

    Article  Google Scholar 

  21. Yoshikuni Kadoya, BrianF Dyson and Malcolm McLean, Metallurgical and Materials Transactions A 2002, vol. 33, pp. 2549-2557.

    Article  Google Scholar 

  22. K. Maruyama, K. Sawada and J. Koike, Isij Int 2001, vol. 41, pp. 641-653.

    Article  Google Scholar 

  23. Alla Kipelova, Marina Odnobokova, Andrey Belyakov and Rustam Kaibyshev, Metallurgical and Materials Transactions A 2013, vol. 44, pp. 1-7.

    Google Scholar 

Download references

This work was funded as part of the National Energy Technology Laboratory’s Regional University Alliance (NETL-RUA), a collaborative initiative of the NETL, this technical effort was performed under the RES contract. The U.S. Department of Energy (DE-FG02-06ER15786) provided financial support for instrumentation. Support was also provided by the Nanoscale Characterization and Fabrication Laboratory of the Institute of Critical Technology and Applied Sciences, Virginia Tech.

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niven Monsegue.

Additional information

Manuscript submitted October 28, 2013.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 6542 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monsegue, N., Reynolds, W.T., Hawk, J.A. et al. How TEM Projection Artifacts Distort Microstructure Measurements: A Case Study in a 9 pct Cr-Mo-V Steel. Metall Mater Trans A 45, 3708–3713 (2014). https://doi.org/10.1007/s11661-014-2331-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2331-0

Keywords

Navigation