Skip to main content
Log in

Modeling of Laser-Tempering Process for Hyper-Eutectoid Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Laser surface tempering causes reduction in the surface hardness without affecting the bulk material hardness. The tempering behavior can be advantageous in advanced manufacturing processes that require controlled softening of the surface layers of through-hardened high-strength steels. This paper presents a computational phase change kinetics-based model for selecting the laser parameters that temper the surface layers of a through-hardened hyper-eutectoid steel (AISI 52100) over a known depth. First, a three-dimensional analytical thermal model is used to evaluate the temperature field produced in the material due to thermal cycles produced by laser scanning of the surface. The computed temperature histories are then fed to the phase-change model to predict the surface and subsurface hardness for the chosen laser-processing conditions. Microstructural analysis of the laser-treated AISI 52100 workpiece surface is presented for different laser-processing conditions. It is shown that good agreement is achieved between the predicted and measured surface hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

t :

Time (seconds)

T(t):

Temperature (K)

\( X,Y, Z \) :

Coordinate representation

A 1 :

Eutectoid temperature of the steel (K)

A CM :

A CM temperature of steel (K)

C C :

Critical carbon concentration, 0.05 pct

C o :

Carbon concentration in ferrite before laser hardening (wt pct)

\( C_{\gamma }^{\text{c}} \) :

Carbon content in austenite in equilibrium with cementite (wt pct)

\( C_{\text{c}}^{\gamma } \) :

Carbon content in cementite in equilibrium with austenite (wt pct)

C m :

Mean carbon content in martensite (wt pct)

C p(T):

Specific heat (J m−1 K−1)

D :

Laser spot diameter (m)

D o :

Pre-exponential for diffusion of carbon (m2 s−1)

D t :

Frequency factor for tempering (s−1)

f :

Volume fraction of carbon

h :

Lumped convection coefficient (W m−2 K−1)

H :

Hardness of the surface (HV)

H o :

Hardness of as-quenched state (HV)

H a :

Hardness of annealed state (HV)

H v :

Hardness of tempered state (HV)

I(t):

Kinetic strength of the heat cycle

I t(t):

Activation energies for tempering

k(T):

Thermal conductivity (J s−1 m−1 K−1)

K :

Supersaturation parameter

K c :

Critical carbon concentration factor

m :

Aging exponent of the material

M s :

Martensite start temperature (K)

M e :

Martensite finish temperature (K)

n :

Empirical exponent of the diffusion mechanism

P o :

Output power of the laser source (W)

P i :

Incident laser power (W)

\( P_{{{\text{a}}(X,Y,Z)}} \) :

Power distribution at location X, Y, Z (W)

ρ :

Density (Kg m−3)

Q :

Activation energy for diffusion of carbon (J mol−1)

\( \dot{Q}_{h} \) :

Rate of heat generation (W m−3)

R :

Universal gas constant (8.314 J mol−1 K−1)

R t :

Instantaneous radius of the particle (m)

r i :

Average initial radius of cementite particle (m)

2r e :

Average spacing of adjacent cementite particles (m)

τ v(t):

Tempering ratio

T melt :

Melting point of the material (K)

T n :

Nose temperature of the material, obtained from the material transformational diagrams (K)

T o :

Ambient temperature (K)

ΔT :

Undercooling temperature (K)

V y :

Laser scan speed (m s−1)

\( {\text{Fe}},\,{\text{C,}}\, {\text{As}},\,{\text{Cu}},\,{\text{Cr}},\,{\text{Mo}},\,{\text{Mn}},\, {\text{Ni}},\,{\text{P}},\,{\text{Si}},\,{\text{V}},\,{\text{W}} \) :

Alloying constituents of the steel (iron, carbon, arsenium, copper, chromium, molybdenum, manganese, nickel, phosphorus, silicon, vanadium, tungsten, respectively)

\( f_{\text{m}} ,\,f_{\text{p}} ,\,f_{\text{ce}} ,\, f_{\text{ra}} ,\,f_{\text{f}} ,\,f_{ \in } \) :

Volume fraction of martensite, pearlite, cementite, retained austenite, ferrite, \( \in \)-carbide, respectively

\( H_{\text{m}} ,\,H_{\text{ce}} ,\,H_{\text{f}} ,\,H_{ \in } \) :

Hardness (HV) of martensite, cementite, ferrite, \( \in \)-carbide, respectively

Λ :

Wavelength of incident beam

\( \in \) :

Emissivity of the material

η :

Efficiency of laser source

2θ :

Diffraction angle (deg)

References

  1. S. Lei and F.E. Pfefferkorn: Proc. ASME Int. Conf. Manufact. Sci. Eng., ASME, Atlanta, GA, 2007, pp. 1–12.

  2. S. Sun, M. Brandt, and M.S. Dargusch: Int. J. Mach. Tool Manufact., 2010, vol. 50 (8), pp. 663–80.

  3. W.M. Steen and C.H.G. Courtney: Met. Technol., 1979, pp. 456–66.

  4. M.F. Ashby and K.E. Easterling: Acta. Metall. Mater., 1984, vol. 32, no. 11, pp. 1935-48.

    Article  Google Scholar 

  5. R.K. Shiue and C. Chen: Metall. Trans. A, 1992, vol. 23A, no. 1, pp. 163-70.

    Article  Google Scholar 

  6. S. Raghavan, S. Melkote, F. Hashimoto: Proc. NAMRI/SME, vol. 39, pp. 224-32, 2011.

    Google Scholar 

  7. F.E. Werner, B.L. Averbach, M. Cohen: Trans. ASM, 1957, vol. 49, pp. 823-41.

    Google Scholar 

  8. G.R. Speich and W.C. Leslie: Metall. Trans., 1972, vol. 3A, pp. 1043-54.

    Article  Google Scholar 

  9. M.S. Devgun and P.A. Molian: J. Mater. Process Tech., 1990, vol. 23 (1), pp. 41–54.

  10. R.S. Lakhar, Y.C. Shin, and M.J.M. Krane: Mater. Sci. Eng. A Struct., vol. 480 (1–2), pp. 209–17.

  11. L. Giorleo, B. Previtali, and Q. Semeraro: Int. J. Adv. Manufact. Technol., 2011, vol. 54, pp. 969-77.

    Article  Google Scholar 

  12. M.R. Frewin, and D.A. Scott: Weld. J., 1999, vol. 78, no. 1, pp. 15s-22s.

    Google Scholar 

  13. J. Alda: Encyclopedia of Optical Engineering, Marcel Dekker Inc., New York 2006.

    Google Scholar 

  14. W.B. Li, M.F. Ashby, and K.E. Easterling: Acta. Metall. Mater., 1986, vol. 34, no. 8, pp. 1533-48.

    Article  Google Scholar 

  15. Z. Zhang, D. Delagnes, and G. Bernhart: Mater. Sci. Eng. A Struct., 2004, vol. 380 (1–2), pp. 222–30.

  16. C. Fiorletta: Metals Handbook, 9th edition, vol. 4, pp. 518-21, ASM, Metals Park, OH, 1981.

    Google Scholar 

  17. C.S. Roberts: Trans. AIME, 1953, vol. 197, pp. 203-04.

    Google Scholar 

  18. A.R. Marder and G. Krauss: Trans. ASM, 1967, vol. 60, pp. 651-60.

    Google Scholar 

  19. M. Cohen: Trans. ASM, 1949, vol. 41, pp. 35-94.

    Google Scholar 

  20. B.S. Lement, B.L. Averbach, and M. Cohen: Trans. ASM, 1954, vol. 46, pp. 851-81.

    Google Scholar 

  21. A.T. Balliet and G. Krauss: Metall. Trans. A, 1976, vol. 7A, pp. 318-20.

    Google Scholar 

  22. W. Johnson and R. Mehl: Trans. AIME, 1939, vol. 135, pp. 416-42.

    Google Scholar 

  23. M. Avrami: J. Chem. Phys., 1939, vol. 7, pp. 1103-112.

    Article  Google Scholar 

  24. R.F. Mehl, and W.C. Hagel: Progress in Metal Physics, vol. 6, pp. 74-134, Pergamon Press, New York, 1956.

    Google Scholar 

  25. A.T.G. Gustavo: M.S. Thesis, Georgia Institute of Technology, Atlanta, Georgia, 2002.

  26. Y.B. Guo and C.R. Liu: J. Manufact. Sci. Eng. T ASME, 2002, vol. 124 (2), pp. 189–99.

  27. B. Podgornik, M. Kalin, J. Vizintin, and F. Vodopivec: J. Tribol. T ASME, 2001, vol. 123 (4), pp. 670–75.

  28. D. Umbrello, J. Hua, and R. Shivpuri: Mat. Sci. Eng. A Struct., 2004, vol. 374, pp. 90-100.

    Article  Google Scholar 

  29. Y.S. Touloukian: “Thermophysical Properties of Matter,” Thermophysical Properties Research Center, Purdue University, West Lafayette, Indiana, 1970

  30. E.C. Bain and H.W. Paxton: Alloying Elements in Steel, 2nd edition, ASM, Metals Park, OH, 1961.

    Google Scholar 

  31. K.W. Andrews: J. Iron and Steel Inst., 1965, vol. 203, pp. 721-27.

    Google Scholar 

  32. ASTM Standard E975-03: Standard Practice for X-ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation, ASTM, West Conshohocken, PA 2008.

  33. C.J. Smithells: Metals Reference Book, 4th edition, vol. 2, p. 649, Butterworths, London, 1967.

    Google Scholar 

  34. M. Hillert: Jernkot. Ann., 1957, vol. 141, pp. 557-85.

    Google Scholar 

  35. M. Hillert, K. Nilsson, and L.E. Törndahl: J. Iron Steel Inst., 1971, vol. 209 (1), pp. 49–66.

  36. V.M. Li, D.V. Niebuhr, L.L. Meekisho, and D.G. Atteridge: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 661-72.

    Google Scholar 

  37. G. F. Vander Voort: Atlas of Time-Temperature Diagrams for Irons and Steels, p. 127, ASM International, Materials Park, Ohio, 1991.

    Google Scholar 

  38. A. Jacot, M. Rappaz, and R.C. Reed: Acta. Metall. Mater., 1997, vol. 46, no. 11, pp. 3949-62.

    Article  Google Scholar 

  39. J. Holloman and L. Jaffe: Trans. AIME, 1945, vol. 162, pp. 223-49.

    Google Scholar 

  40. H. Pantsar and V. Kujanpaa: J. Laser Appl., 2003, vol. 16 (3), pp. 147–53.

Download references

Acknowledgments

The first two authors are grateful to Dr. F. Hashimoto of The Timken Company, Canton, OH, USA for his encouragement and support of the work reported in this paper. The authors also acknowledge access to XRD facilities for phase analysis in the School of Materials Science & Engineering at Georgia Tech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shreyes N. Melkote.

Additional information

Manuscript submitted November 4, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raghavan, S., Melkote, S.N. & Hong, JI. Modeling of Laser-Tempering Process for Hyper-Eutectoid Steels. Metall Mater Trans A 45, 2612–2625 (2014). https://doi.org/10.1007/s11661-014-2204-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2204-6

Keywords

Navigation