Skip to main content
Log in

In Situ Characterization of Twin Nucleation in Pure Ti Using 3D-XRD

  • Symposium: Neutron and X-Ray Studies of Advanced Materials VI: Diffraction Centennial and Beyond
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A small tensile specimen of grade 1 commercially pure titanium was deformed to a few percent strain with concurrent synchrotron X-ray diffraction measurements to identify subsurface {10\( \bar{1} \)2} twin nucleation events. This sample was from the same piece of material in which a prior study showed that twin nucleation stimulated by slip transfer across a grain boundary accounted for many instances of twin nucleation. The sample had a strong c-axis texture of about eight times random aligned with the tensile axis. After ~1.5 pct tensile strain, three twin nucleation events were observed in grains where the c-axis was nearly parallel to the tensile direction. Far-field 3-D X-ray diffraction data were analyzed to obtain the positional center of mass, the average lattice strain, and stress tensors in each grain and twin. In one case where the parent grain was mostly surrounded by hard grain orientations, the twin system with the highest resolved shear stress (RSS) among the six {10\( \bar{1} \)2} twin variants was activated and the stress in the parent grain decreased after twin nucleation. In two other parent grains with a majority of softer neighboring grain orientations, the observed twins did not occur on the twin system with the highest RSS. Their nucleation could be geometrically attributed to slip transfer from neighboring grains with geometrically favorable 〈a〉 basal slip systems, and the stress in the parent grain increased after twin nucleation. In all three twin events, the stress in the twin was 10 to 30 pct lower than the stress in the parent grain, indicating load partitioning between the hard-oriented parent grain and the soft-oriented twin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Reference 39 has tan(θ) rather than tan(2θ) in Eq. [2]; the use of 2θ is necessary to be in agreement with the geometry of Figure 3, and this correction yields grain center-of-mass maps with scaling consistent with the observed grain size and the width of the beam that was used.

References

  1. JW Christian and S Mahajan, Progress in Materials Science 39, 1-157, 1995.

    Article  Google Scholar 

  2. M.H. Yoo, J.R. Morris, K.M. Ho, and S.R. Agnew, Metall. Mater. Trans. A, 33, 813-822, 2002.

    Google Scholar 

  3. S.G. Song and G.T. Gray III, Acta Metall. Mater., 43, 2339-2350, 1995.

    Article  Google Scholar 

  4. J.F. Bingert, T.A. Mason, G.C. Kaschner, P.J. Maudlin, and G.T. Gray III, Metall. Mater. Trans. A, 33, 955-963, 2002.

    Google Scholar 

  5. N. Stanford, U. Carlson, and M.R. Barnett, Metall. Mater. Trans. A, 39, 934-944, 2008.

    Article  Google Scholar 

  6. D. Bhattacharyya, E.K. Cerreta, R.J. McCabe, M. Niewczas, G.T. Gray III, A. Misra, and C.N. Tome, Acta Mater. 57, 305-315, 2009.

    Article  Google Scholar 

  7. N. Bozzolo, L.S. Chan, and A.D. Rollett, Journal of Applied Crystallography, 43, 596-602. 2010.

    Article  Google Scholar 

  8. H. El Kadiri, A.L. Oppedal, Journal of the Mechanics and Physics of Solids 58, 613-624, 2010.

    Article  Google Scholar 

  9. Brown, DW, Agnew, SR, Bourke, MAM, Holden, TM, Vogel, SC, Tome, CN Materials Science and Engineering A 399, 1-12, 2005.

    Article  Google Scholar 

  10. Clausen B, Tome CN, Brown DW, Agnew SR, Acta Mater., 56, 2456–68, 2008.

    Article  Google Scholar 

  11. CC Aydiner, JV Bernier, B Clausen, U Lienert, CN Tomé, and DW Brown, Phys. Rev. B 80, 024113, 2009.

    Article  Google Scholar 

  12. Coghe, F., Tirry, W., Rabet, L., Schryvers, D., Van Houtte, P., Materials Science and Engineering A 537, 1-10, 2012.

    Article  Google Scholar 

  13. Prakash DGL, Ding R, Moat RJ, Jones I, Withers PJ, da Fonseca JQ, Preuss M, Mater. Sci. Eng. A, 527, 5734–44, 2010.

    Article  Google Scholar 

  14. L. Capolungo, P.E. Marshall, R.J. McCabe, I.J. Beyerlein, and C.N. Tomé, Acta Mater, 57, 6047-6056, 2009.

    Article  Google Scholar 

  15. I.J. Beyerlein, L. Capolungo, P.E. Marshall, R.J. McCabe, and C.N. Tomé, Phil. Mag., 90, 2161-2190, 2010.

    Article  Google Scholar 

  16. C.N. Tomé, I.J. Beyerlein, J. Wang, and R.J. McCabe, JOM, 63(3), 19-23, 2011.

    Article  Google Scholar 

  17. J. Wang, I.J. Beyerlein, and C.N. Tomé, Scripta Mater., 63, 741-746, 2010.

    Article  Google Scholar 

  18. J. Wang, I.J. Beyerlein, Modelling and Simulation in Materials Science and Engineering. 20, 024002, 2012.

    Article  Google Scholar 

  19. C.D. Barrett, Haitham El Kadiri, M.A. Tschopp, J. Mech. Phys. Solids 60, 2084-2099, 2012.

    Article  Google Scholar 

  20. L. Wang, Y. Yang, P. Eisenlohr, T.R. Bieler, M.A. Crimp, and D.E. Mason, Metall. Mater. Trans. A, 41, 421-430, 2010.

    Article  Google Scholar 

  21. L. Wang, P.Eisenlohr, Y. Yang, T.R. Bieler, M.A. Crimp, Scripta Materialia 63(8), 827-830, 2010.

    Article  Google Scholar 

  22. L. Wang, R.I. Barabash, Y. Yang, T.R. Bieler, M.A. Crimp, P. Eisenlohr, W. Liu, and G.E. Ice, Metall. Mater. Trans. A 42, 626-635, 2011.

    Article  Google Scholar 

  23. L. Wang, R.I. Barabash, T.R. Bieler, W. Liu, and P. Eisenlohr: Metall. Mater. Trans. A, 44A, pp. 3664-74, 2013.

    Article  Google Scholar 

  24. Luster J., Morris M.A., Metall. Mater. Trans. A 26, 1745-1756, 1995.

    Article  Google Scholar 

  25. Clark, W.A.T., Wagoner, R.H., Shen, Z.Y., Lee, T.C., Robertson, I.M., Birnbaum, H.K., Scripta Metallurgica et Materialia 26, 203-206, 1992.

    Article  Google Scholar 

  26. Z. Shen, R. H. Wagoner And W. A. T. Clark, Acta Metal. 36, 3231-3242, 1988.

    Article  Google Scholar 

  27. de Koning, M., Miller, R., Bulatov, V.V., Abraham, F.F., Philosophical Magazine A 82 (13), 2511–2527, 2002.

    Article  Google Scholar 

  28. de Koning, M, Kurtz, RJ, Bulatov, VV, Henager, CH, Hoagland, RG, Cai, W, Nomura, M, Journal of Nuclear Materials 323, 281-289, 2003.

    Article  Google Scholar 

  29. B.C. Larson, W. Yang, G.E. Ice, J.D. Budai, and J.Z. Tischler, Nature, 415, 887-890, 2002.

    Article  Google Scholar 

  30. W. Liu, G.E. Ice, B.C. Larson, W. Yang, J.Z. Tischler, and J. D. Budai, Metall. Mater. Trans. A., 35, 1963-1967, 2004.

    Article  Google Scholar 

  31. W. Liu, G.E. Ice, B.C. Larsen, W. Yang, and J.Z. Tischler, Ultramicroscopy 103, 199-204, 2005.

    Article  Google Scholar 

  32. G.E. Ice and R.I. Barabash, Dislocations in Solids Chapter 79 vol 13, Elsevier, New York, NY, 2007, pp. 500–601.

    Google Scholar 

  33. Poulsen H F, Garbe S, Lorentzen T, Jensen, DJ, Poulsen, FW, Andersen, NH, Frello, T, Feidenhansl, R, Graafsma, H, Journal of Synchrotron Radiation, 4, 147-154, 1997.

    Article  Google Scholar 

  34. Lauridsen E M, Schmidt S, Suter R M, Poulsen, HF, Journal of Applied Crystallography 34, 744-750, 2001.

    Article  Google Scholar 

  35. Poulsen H F, Nielsen S F, Lauridsen E M, Schmidt, S, Suter, RM, Lienert, U, Margulies, L, Lorentzen, T, Jensen, DJ, Journal of Applied Crystallography 34, 751-756, 2001.

    Article  Google Scholar 

  36. Poulsen H F, Three-Dimensional X-ray Diffraction Microscopy, Berlin, Springer, 2004.

    Book  Google Scholar 

  37. Poulsen H F, Journal of Applied Crystallography 45, 1084-1097, 2012.

    Article  Google Scholar 

  38. Margulies L, Lorentzen T, Poulsen H F, T. Leffers, Acta Materialia 50(7), 1771-1779, 2002.

    Article  Google Scholar 

  39. Martins RV, Margulies L, Schmidt S, Henning F. Poulsen, Torben Leffers, Materials Science and Engineering A, 387, 84-88, 2004.

    Article  Google Scholar 

  40. Bernier J V, Barton N R, Lienert U, Miller, M. P., Journal of Strain Analysis for Engineering Design 46(7), 527-547, 2011.

    Article  Google Scholar 

  41. Oddershede J, Schmidt S, Poulsen H F, Sorensen, HO, Wright, J, Reimers, W, Journal of Applied Crystallography 43, 539-549, 2010.

    Article  Google Scholar 

  42. Oddershede J, Camin B, Schmidt S, Mikkelsen, Lars P, Sorensen, HO, Lienert, U, Poulsen, HF, Reimers, W, Acta Materialia 60(8), 3570-3580, 2012.

    Article  Google Scholar 

  43. Beaudoin AJ, Obstalecki M, Storer R, Tayon W, Mach J, Kenesei P, and Lienert U, Model. Simul. Mater. Sci. Eng., 20, 024006, 2012.

    Article  Google Scholar 

  44. Suter R M, Hennessy D, Xiao C, Lienert, U, Review of Scientific Instruments 77(12), 123905, 2006.

    Article  Google Scholar 

  45. Schmidt S, Olsen UL, Poulsen HF, Sorensen HO, Lauridsen EM, Margulies L, Maurice C, Jensen DJ: Scripta Mater., 59(5), 491-494, 2008.

    Article  Google Scholar 

  46. Hefferan M, Li SF, Lind J, Lienert U, Rollett AD, Wynblatt P, Suter RM, Comput. Mater. Continua, 14, 209–219, 2009.

    Google Scholar 

  47. Li S F, Lind J, Hefferan C M, Pokharel, R, Lienert, U, Rollett, AD, Suter, RM, Journal of Applied Crystallography 45, 1098-1108, 2012.

    Article  Google Scholar 

  48. U. Lienert, S.F. Li, Hefferan CM, Lind J, Suter RM, Bernier JV, Barton NR, Brandes MC, Mills MJ, Miller MP, Jakobsen B, Pantleon W: JOM, 63(7), 70-77, 2011.

    Article  Google Scholar 

  49. Lienert, U, Brandes, MC, Bernier, JV, Weiss, J, Shastri, SD, Mills, MJ, Miller, MP, Materials Science and Engineering A 524, 46–54 (2009).

    Article  Google Scholar 

  50. G Simmons, H Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties (MIT Press: Cambridge, MA) 1971.

    Google Scholar 

  51. H.O. Sørensen, S. Schmidt, J.P. Wright, G. Vaughan, S. Techert, E. Garman, J. Oddershede, J. Davaasambuu, K. Paithankar, C. Gundlach, and H.F. Poulsen: Z. Krist., 2012, vol. 227, pp. 63–78. See also http://sourceforge.net/apps/trac/fable/wiki. Accessed 11 May 2013.

  52. S. Schmidt: unpublished research, 2013.

  53. JK Edmiston, JV Bernier, NR Barton, GC Johnson, Acta Crystallogr. A 68, 181–187, 2012.

    Article  Google Scholar 

  54. P. Kenesei: Ph.D. Thesis, Eötvös Loránd University, Hungary, 2010.

  55. H Abdolvand, MR Daymond, Journal of the Mechanics and Physics of Solids 61 803–818 2013.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NSF Materials World Network Grants NSF-DMR-1108211 and DMR-0710570. Use of the APS was supported by the United States Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. We appreciate the staff of Beamline 1-ID whose support made this experiment possible, and the assistance of MSU graduate student James Seal in data collection during the experiment. LW is supported under the U.S. Department of Energy contract DE-AC02-06CH11357. AJB received support through the Visiting Scientist program of the X-ray Science Division, Argonne National Laboratory. Technical discussions with Jette Oddershede of Risø, and Jonathan Wright and Andrew Goetz from ESRF were very helpful in troubleshooting our use of FABLE software. Discussions with M.A. Crimp and P. Eisenlohr were helpful in refining the presentation of the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas R. Bieler.

Additional information

Manuscript submitted March 21, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bieler, T.R., Wang, L., Beaudoin, A.J. et al. In Situ Characterization of Twin Nucleation in Pure Ti Using 3D-XRD. Metall Mater Trans A 45, 109–122 (2014). https://doi.org/10.1007/s11661-013-2082-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2082-3

Keywords

Navigation