Skip to main content
Log in

Na Partitioning During Thermomechanical Processing of an Mg-Sn-Zn-Na Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Microstructural characterization was used to examine the changes that occur in an Mg-6Sn-5Zn-0.3Na alloy from casting to extrusion at either 623 K or 723 K (350 °C or 450 °C) followed by artificial aging at 473 K (200 °C). In particular, the partitioning of Na was examined at each step using STEM-EDS mapping. Na atoms were found to preferentially partition to the Mg-Zn phase when present. After extrusion, when no Mg-Zn was observed, the spherical Mg2Sn particles were found to be enriched in Na, particularly at the higher extrusion temperature. Artificial aging following extrusion resulted in a change in Na partitioning, and a coarse distribution of Mg-Zn precipitate rods. Na microadditions led to a high as-extruded hardness, but a significant tension–compression yield asymmetry was still observed at room temperature. The compressive yield strength was found to decrease significantly after 1000 hours of aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.F. Nie, Metallurgical and Materials Transactions A, 43 (2012) 3891-3939.

    Article  Google Scholar 

  2. M.A. Meyers and K.K. Chawla: in Mechanical Behavior of Materials, Prentice-Hall, Inc., Upper Saddle River, NJ, 1999, pp. 463–96.

  3. A.A. Nayeb-Hashemi, J.B. Clark, Phase Diagrams of Binary Magnesium Alloy, ASM International, Materials Park, OH, 1988.

    Google Scholar 

  4. P. Villars, L.D. Calver, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed., ASM International, Materials Park, OH, 1991.

    Google Scholar 

  5. J. van der Planken, Journal of Materials Science, 4 (1969) 927-929.

    Article  Google Scholar 

  6. G. Derge, A.R. Kommel, and R.F. Mehl: in Transactions of the American Institute of Mining and Metallurgical Engineers, American Institute of Mining and Metallurgical Engineers, Pamphlet 1937, pp. 367–78.

  7. C.L. Mendis, C.J. Bettles, M.A. Gibson, C.R. Hutchinson, Materials Science and Engineering A, 435-436 (2006) 163-171.

    Google Scholar 

  8. T.T. Sasaki, K. Oh-ishi, T. Ohkubo, K. Hono, Scripta Materialia, 55 (2006) 251-254.

    Article  CAS  Google Scholar 

  9. H.-T. Son, J.-B. Lee, H.-G. Jeong, T.J. Konno, Materials Letters, 65 (2011) 1966-1969.

    Article  CAS  Google Scholar 

  10. T.T. Sasaki, K. Yamamoto, T. Honma, S. Kamado, K. Hono, Scripta Materialia, 59 (2008) 1111-1114.

    Article  CAS  Google Scholar 

  11. T.T. Sasaki, J.D. Ju, K. Hono, K.S. Shin, Scripta Materialia, 61 (2009) 80-83.

    Article  CAS  Google Scholar 

  12. T.T. Sasaki, K. Oh-ishi, T. Ohkubo, K. Hono, Materials Science and Engineering A, 530 (2011) 1-8.

    Article  CAS  Google Scholar 

  13. S. Harosh, L. Miller, G. Levi, M. Bamberger, Journal of Materials Science, 42 (2007) 9983-9989.

    Article  CAS  Google Scholar 

  14. W.L. Cheng, S.S. Park, W.N. Tang, B.S. You, and B.H. Koo: Trans. Nonferrous Met. Soc. China (English ed.), 2010, vol. 20, pp. 2246–52.

  15. M.A. Gibson, X. Fang, C.J. Bettles, C.R. Hutchinson, Scripta Materialia, 63 (2010) 899-902.

    Article  CAS  Google Scholar 

  16. C.L. Mendis, C.J. Bettles, M.A. Gibson, S. Gorsse, C.R. Hutchinson, Philosophical Magazine Letters, 86 (2006) 443-456.

    Article  CAS  Google Scholar 

  17. J. Geng, X. Gao, X.Y. Fang, J.F. Nie, Scripta Materialia, 64 (2011) 506-509.

    Article  CAS  Google Scholar 

  18. X. Gao, J.F. Nie, Scripta Materialia, 56 (2007) 645-648.

    Article  CAS  Google Scholar 

  19. A. Singh, A.P. Tsai, Scripta Materialia, 57 (2007) 941-944.

    Article  CAS  Google Scholar 

  20. J.S. Chun, J.G. Byrne, Journal of Materials Science, 4 (1969) 861-872.

    Article  CAS  Google Scholar 

  21. L.Y. Wei, G.L. Dunlop, H. Westengen, Metallurgical and Materials Transactions A, 26A (1995) 1705-1716.

    Article  CAS  Google Scholar 

  22. J.B. Clark, Acta Metallurgica, 13 (1965) 1281-1289.

    Article  CAS  Google Scholar 

  23. L. Sturkey, J.B. Clark, Journal of the Institute of Metals, 88 (1959) 177-181.

    Google Scholar 

  24. A. Singh, J.M. Rosalie, H. Somekawa, and T. Mukai: in Magnesium Technology, S.R. Agnew, N.R. Neelameggham, E. Nyberg, and W. Sillekens, eds., TMS, Seattle, WA, 2010, pp. 323–27.

  25. J.M. Rosalie, H. Somekawa, A. Singh, T. Mukai, Philosophical Magazine, 90 (2010) 3355-3374.

    Article  CAS  Google Scholar 

  26. A. Singh, J.M. Rosalie, H. Somekawa, T. Mukai, Philosophical Magazine Letters, 90 (2010) 641-651.

    Article  CAS  Google Scholar 

  27. S. Henes, V. Gerold, Zeitschrift fuer Metallkunde, 53 (1962) 743-748.

    CAS  Google Scholar 

  28. F.R. Elsayed, T.T. Sasaki, C.L. Mendis, T. Ohkubo, K. Hono, Scripta Materialia, 68 (2013) 797-800.

    Article  CAS  Google Scholar 

  29. I.L. Dillamore, W.T. Roberts, Metallurgical Reviews, 10 (1965) 271 - 380.

    Article  CAS  Google Scholar 

  30. J. Bohlen, S.B. Yi, J. Swiostek, D. Letzig, H.G. Brokmeier, K.U. Kainer, Scripta Materialia, 53 (2005) 259-264.

    Article  CAS  Google Scholar 

  31. J. Bohlen, S.B. Yi, D. Letzig, K.U. Kainer, Materials Science and Engineering A, 527 (2010) 7092-7098.

    Article  Google Scholar 

  32. M.R. Barnett, Materials Science and Engineering A, 464 (2007) 1-7.

    Article  Google Scholar 

  33. J.R. TerBush, M. Setty, N. Stanford, M.R. Barnett, A.J. Morton, and J.F. Nie: 9th Int. Conf. Magnes. Alloys Appl., Vancouver, BC, Canada, 2012, pp. 579–86.

  34. N. Stanford, J.R. TerBush, M. Setty, M.R. Barnett, Metallurgical and Materials Transactions A, 44 (2013) 2466-2469.

    Article  Google Scholar 

  35. A.D. Pelton, Bull. Alloy Phase Diagrams, 5 (1984) 454-456.

    Google Scholar 

  36. H. Okamoto, Desk Handbook: Phase Diagrams for Binary Alloys, 2nd ed., ASM International, Materials Park, OH, 2010.

    Google Scholar 

  37. X. Gao, J.F. Nie, Scripta Materialia, 57 (2007) 655-658.

    Article  CAS  Google Scholar 

  38. H. Somekawa, A. Singh, T. Mukai, Scripta Materialia, 60 (2009) 411-414.

    Article  CAS  Google Scholar 

  39. H. Somekawa, A. Singh, T. Mukai, Journal of Materials Research, 22 (2006) 965-973.

    Article  Google Scholar 

  40. N. Stanford, M.R. Barnett, Materials Science and Engineering A, 496 (2008) 399-408.

    Article  Google Scholar 

  41. M.R. Barnett, Scripta Materialia, 59 (2008) 696-698.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Australian Research Council, and use of the facilities within the Monash Centre for Electron Microscopy (MCEM). Thanks are also due to Mohan Setty (Deakin University) for his assistance with the alloy preparation and processing, and to Sam Gao (Monash University) for his assistance with the phase identification and microbeam electron diffraction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica R. TerBush.

Additional information

Manuscript submitted November 26, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

TerBush, J.R., Stanford, N., Nie, JF. et al. Na Partitioning During Thermomechanical Processing of an Mg-Sn-Zn-Na Alloy. Metall Mater Trans A 44, 5216–5225 (2013). https://doi.org/10.1007/s11661-013-1872-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1872-y

Keywords

Navigation