Skip to main content
Log in

Changes in the Grain Boundary Character and Energy Distributions Resulting from a Complexion Transition in Ca-Doped Yttria

  • Symposium: Deformation and Transitions at Grain Boundaries
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The grain boundary character distribution and the relative grain boundary energy of 100 ppm Ca-doped yttria were measured before and after a previously identified grain boundary complexion transition. The grain boundary character distribution of samples exhibiting normal grain growth (before the complexion transition) favored {111} planes, whereas those exhibiting abnormal grain growth (after the complexion transition) favored {001} planes. Additionally, the relative grain boundary-to-surface energy ratios in the sample exhibiting abnormal grain growth were 33 pct lower than in the sample exhibiting normal grain growth. The results also indicate that the complexion transition increased the anisotropy of the grain boundary energy, and this may be responsible for the increase in the anisotropy of the grain boundary character distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Borovkova, E. Lukin, D. Poluboyarinov, and E. Sapozhnikova: Refract. Ind. Ceram., 1970, vol. 11, pp. 717–22.

    Google Scholar 

  2. L.B. Borovkova, E.S. Lukin, and D.N. Poluboyarinov: Refract. Ind. Ceram., 1972, vol. 13, pp. 595–600.

    Google Scholar 

  3. P.L. Chen and I.W. Chen: J. Am. Ceram. Soc., 1996, vol. 79, pp. 1801–09.

    Article  CAS  Google Scholar 

  4. P. Duran, J. Tartaj, and C. Moure: Ceram. Int., 2002, vol. 28, pp. 791–803.

    Article  CAS  Google Scholar 

  5. P.J. Jorgensen and R.C. Anderson: J. Am. Ceram. Soc., 1967, vol. 50, pp. 553–58.

    Article  CAS  Google Scholar 

  6. S.L. Ma and M.P. Harmer: J. Am. Ceram. Soc., 2011, vol. 94, pp. 651–55.

    Article  CAS  Google Scholar 

  7. Y. Tsukuda: Am. Ceram. Soc. Bull., 1983, vol. 62, pp. 510–12.

    CAS  Google Scholar 

  8. A. Brenier and G. Boulon: J. Alloys Compd., 2001, vol. 323, pp. 210–13.

    Article  Google Scholar 

  9. C. Greskovich and J.P. Chernoch: J. Appl. Phys., 1974, vol. 45, pp. 4495–4502.

    Article  CAS  Google Scholar 

  10. J.R. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A.A. Kaminskii: Jpn. J. Appl. Phys. Part 2-Lett., 2002, vol. 41, pp. L1373–75.

  11. P. Hogan, T. Stefanik, C. Willingham, and R. Gentilman: The 10 th DoD Electromagnetic Windows Symp., Norfolk, VA, 2004.

    Google Scholar 

  12. G.C. Wei, M.R. Pasucci, E.A. Trichett, C. Brecher, and W.H. Rhodes: Ceramics and Inorganic Crystals for Optics, Electro-Optics, and Nonlinear Conversion, San Diego, CA, 1988, pp. 5–13.

  13. K.A. Wickershsheim and R.A. Lefever: J. Opt. Soc. Am., 1961, vol. 51, pp. 1147–48.

    Article  Google Scholar 

  14. J.E. Burke and D. Turnbull: Progr. Met. Phys., 1952, vol. 3, pp. 220–92.

    Article  CAS  Google Scholar 

  15. R.L. Coble: J. Appl. Phys., 1961, vol. 32, pp. 793–99.

    Article  CAS  Google Scholar 

  16. S.J. Dillon, M.P. Harmer, and J. Luo: JOM, 2009, vol. 61, pp. 38–44.

    Article  Google Scholar 

  17. S.J. Dillon, M. Tang, W.C. Carter, and M.P. Harmer: Acta Mater., 2007, vol. 55, pp. 6208–18.

    Article  CAS  Google Scholar 

  18. M.P. Harmer: J. Am. Ceram. Soc., 2010, vol. 93, pp. 301–17.

    Article  CAS  Google Scholar 

  19. M.P. Harmer: Science, 2011, vol. 332, pp. 182–83.

    Article  CAS  Google Scholar 

  20. M. Tang, W.C. Carter, and R.M. Cannon: Phys. Rev. B, 2006, vol. 73, p. 14.

    Google Scholar 

  21. M. Tang, W.C. Carter, and R.M. Cannon: Phys. Rev. Lett., 2006, vol. 97, p. 4.

    Google Scholar 

  22. M. Baram, D. Chatain, and W.D. Kaplan, Science, 2011, vol. 332, pp. 206–09.

  23. J. Luo, H.K. Cheng, K.M. Asl, C.J. Kiely, and M.P. Harmer: Science, 2011, vol. 333, pp. 1730–33.

    Article  CAS  Google Scholar 

  24. S.J. Dillon and M.P. Harmer: Acta Mater., 2007, vol. 55, pp. 5247–54.

    Article  CAS  Google Scholar 

  25. S.J. Dillon, M.P. Harmer, and G.S. Rohrer: J. Am. Ceram. Soc., 2010, vol. 93, pp. 1796–1802.

    CAS  Google Scholar 

  26. S.J. Dillon, H. Miller, M.P. Harmer, and G.S. Rohrer: Int. J. Mater. Res., 2010, vol. 101, pp. 50–56.

    Article  CAS  Google Scholar 

  27. S. Ma. Ph.D. Dissertation, Lehigh University, Bethleham, PA, 2010.

  28. G.S. Rohrer: J. Am. Ceram. Soc., 2011, vol. 94, pp. 633–46.

    Article  CAS  Google Scholar 

  29. G.S. Rohrer: J. Mater. Sci., 2011, vol. 46, pp. 5881–95.

    Article  CAS  Google Scholar 

  30. G.S. Rohrer, D.M. Saylor, B. El Dasher, B.L. Adams, A.D. Rollett, and P. Wynblatt: Z. Fur Metallkunde, 2004, vol. 95, pp. 197–214.

  31. D.M. Saylor, B.S. El-Dasher, B.L. Adams, and G.S. Rohrer: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1981–89.

    Article  CAS  Google Scholar 

  32. D.M. Saylor and G.S. Rohrer: J. Am. Ceram. Soc., 2002, vol. 85, pp. 2799–2804.

    Article  CAS  Google Scholar 

  33. W.W. Mullins: J. Appl. Phys., 1957, vol. 28, pp. 333–39.

    Article  CAS  Google Scholar 

  34. S.J. Dillon, M.P. Harmer, and G.S. Rohrer: Acta Mater., 2010, vol. 58, pp. 5097–5108.

    Article  CAS  Google Scholar 

  35. C.A. Handwerker, J.M. Dynys, R.M. Cannon, and R.L. Coble: J. Am. Ceram. Soc., 1990, vol. 73, pp. 1371–77.

    Article  CAS  Google Scholar 

  36. D.M. Saylor, A. Morawiec, B.L. Adams, and G.S. Rohrer: Interface Sci., 2000, vol. 8, pp. 131–40.

    Article  CAS  Google Scholar 

  37. D.M. Saylor and G.S. Rohrer: J. Am. Ceram. Soc., 1999, vol. 82, pp. 1529–36.

    Article  CAS  Google Scholar 

  38. G.S. Rohrer: http://mimp.materials.cmu.edu/~gr20/stereology/100601_stereo.zip. 2011.

  39. Gwyddion, http://gwyddion.net/resources.php. 2011.

  40. S.J. Dillon and G.S. Rohrer: J. Am. Ceram. Soc., 2009, vol. 92, pp. 1580–85.

    Article  CAS  Google Scholar 

  41. F. Papillon, G.S. Rohrer, and P. Wynblatt: J. Am. Ceram. Soc., 2009, vol. 92, pp. 3044–51.

    Article  CAS  Google Scholar 

  42. S.J. Dillon and M.P. Harmer: J. Eur. Ceram. Soc., 2008, vol. 28, pp. 1485–93.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

G.R. and S.B. acknowledge MRSEC program of the National Science Foundation under Award Number DMR-0520425. W.L. acknowledges the National Science Foundation Research Experience for Undergraduates Site grant DMR-1005076. M.P.H. and S.M. gratefully acknowledge the financial support from the U.S. DOE Office of Basic Energy Science grant in the Electron and Scanning Probe Microscopies Program (Grant No. DE-FG02-08ER46548) managed by Dr. Jane G. Zhu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory S. Rohrer.

Additional information

Manuscript submitted January 11, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bojarski, S.A., Ma, S., Lenthe, W. et al. Changes in the Grain Boundary Character and Energy Distributions Resulting from a Complexion Transition in Ca-Doped Yttria. Metall Mater Trans A 43, 3532–3538 (2012). https://doi.org/10.1007/s11661-012-1172-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1172-y

Keywords

Navigation