Skip to main content
Log in

A Study of Linear Friction Weld Microstructure in Single Crystal CMSX-486 Superalloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructure of linear friction welds in single crystal (SX) CMSX 486 superalloy was studied. Gleeble thermomechanical simulation of the welding process was also performed in order to understand the microstructural changes induced in the alloy during the joining process. Microstructural analysis of the welded and Gleeble-simulated specimens showed that extensive liquation occurred in the alloy during joining, which is in contrast to the general assumption that linear friction welding (LFW) occurs exclusively in the solid state. The study revealed the application of the compressive load during the forging stage of LFW induced rapid solidification of the resultant metastable liquid phase. Nevertheless, part of the liquid resulted in a continuous Hf-base oxide phase along the weld line. Possible ways of preventing the formation of the potentially deleterious oxide film and, thus, improve the prospect of applying LFW for the joining of CMSX-486 superalloy are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

  2. PHILIPS is a trademark of FEI Company, Hillsboro, OR.

References

  1. K. Harris and J. Wahl: Proc. 6th Int. Charles Parsons Turbine Conf., Dublin, Ireland, Sept. 16–18, 2003, Institute of Materials, Minerals and Mining, London, UK, 2003, pp. 687–701.

  2. J. Wahl and K. Harris: Proc. ASME Turbo Expo, 2009, vol. 4, pp. 861–71.

    CAS  Google Scholar 

  3. Y.L. Wang, O.A. Ojo, R.G. Ding, and M.C. Chaturvedi: Mater. Sci. Technol., 2009, vol. 25, pp. 68–75.

    Article  CAS  Google Scholar 

  4. A. Hirose, D. Nakamura, H. Yanagawa, and K.F. Kobayashi: Mater. Sci. Forum, 2003, vols. 426–432, pp. 4007–12.

    Article  Google Scholar 

  5. S. Katayama and M. Sakamoto: ASM Conf. Proc.–Joining of Advanced and Specialty Materials, Oct. 18–20, 2004, ASM International, Materials Park, OH, 2005, pp. 108–12.

  6. J.M. Vitek, S.S. Babu, J.W. Park, and S.A. David: Superalloys 2004, TMS, Warrendale, PA, 2006, pp. 459–65.

    Google Scholar 

  7. O.T. Ola, O.A. Ojo, P. Wanjara, and M.C. Chaturvedi: Philos. Mag. Lett., 2011, vol. 91, pp. 140–49.

    Article  CAS  Google Scholar 

  8. O.A. Ojo, N.L. Richards, and M.C. Chaturvedi: Scripta Mater., 2004, vol. 50, pp. 641–46.

    Article  CAS  Google Scholar 

  9. J.D. Liu, T. Jin, N.R. Zhao, Z.H. Wang, X.F. Sun, H.R. Guan, and Z.Q. Hu: Sci. Technol. Weld. Join., 2010, vol. 15, pp. 194–98.

    Article  CAS  Google Scholar 

  10. J.H. Westbrook: Z. Kristallogr, 1958, vol. 110, pp. 21–29.

    Article  CAS  Google Scholar 

  11. Z. Yunrong and L. Chenggong: Superalloys 1988, TMS, Warrendale, PA, 1998, pp. 475–84.

    Google Scholar 

  12. A. Baldan: J. Mater. Sci., 1990, vol. 25, pp. 4341–48.

    Article  CAS  Google Scholar 

  13. S.V. Lalam, G.M. Reddy, T. Mohandas, M. Kamaraj, and B.S. Murty: Mater. Sci. Technol., 2009, vol. 25, pp. 851–61.

    Article  CAS  Google Scholar 

  14. M. Karadge, P. Frankel, A. Steuwer, C. Lovell, S. Bray, P.J. Withers, and M. Preuss: Joining of Advanced and Specialty Materials, Materials Science and Technology (MS&T), 2006: Product Manufacturing, ASM International, Materials Park, OH, The American Ceramic Society, Westerville, OH, Association for Iron and Steel Technology, Warrendale, PA, The Minerals, Metals and Materials Society, Warrendale, PA, pp. 35–44.

  15. W. Tillmann and E. Lugscheider: Proc. Int. Conf. on the Joining of Materials JOM-7, The European Institute for the Joining of Materials, Helsingør, Denmark, 1995, pp. 236–47.

  16. J.J. Pepe and W.F. Savage: Weld. J., 1967, vol. 46, pp. 411s–422s.

    CAS  Google Scholar 

  17. O.A. Ojo and M.C. Chaturvedi: Mater. Sci. Eng. A, 2005, vol. 403, pp. 77–86.

    Article  Google Scholar 

  18. H.R. Zhang and O.A. Ojo: Philos. Mag. Lett., 2009, vol. 89, pp. 787–94.

    Article  CAS  Google Scholar 

  19. M. Durand-Charre: The Microstructure of Superalloys, Gordon and Breach Science Publishers, Amsterdam, Netherlands, 1997.

  20. P. Willemin and M. Durrand-Charre: J. Mater. Sci., 1990, vol. 25, pp. 168–74.

    Article  CAS  Google Scholar 

  21. R. Rosenthal and D.R.F. West: Mater. Sci. Technol., 1999, vol. 15, pp. 1387–94.

    CAS  Google Scholar 

  22. O.A. Ojo, N.L. Richards, and M.C. Chaturvedi: J. Mater. Sci., 2004, vol. 39, pp. 7401–04.

    Article  CAS  Google Scholar 

  23. R.K. Sidhu, O.A. Ojo, and M.C. Chaturvedi: J. Mater. Sci., 2008, vol. 43, pp. 3612–17.

    Article  CAS  Google Scholar 

  24. O.A. Ojo, N.L. Richards, and M.C. Chaturvedi: Mater. Sci. Technol., 2004, vol. 20, pp. 1027–34.

    Article  CAS  Google Scholar 

  25. S. Swaminathan, K. Oh-Ishi, A.P. Zhilyaev, C.B. Fuller, B. London, M.W. Mahoney, and T.R. Mcnelley: Metall. Mater. Trans. A, 2010, vol. 41A, p. 631–40.

    Article  CAS  Google Scholar 

  26. B. Radhakrishnan and R.G. Thompson: Metall. Mater. Trans. A, 1992, vol. 23A. pp. 1783–99.

    CAS  Google Scholar 

  27. S.W. Baker and G.R. Purdy: Acta Mater., 1998, vol. 46, pp. 511–24.

    Article  Google Scholar 

  28. R.W. Balluffi, S.M. Allen, and W.C. Carter: Kinetics of Materials, John Wiley and Sons, Inc., New York, NY, 2005, pp. 41–76.

    Book  Google Scholar 

  29. N.E.B. Cowern, P.C. Zalm, P. Van der Sluis, D.J. Gravensteijn, and W.B. de Boer: Phys. Rev. Lett., 1994, vol. 72, pp. 2585–88.

    Article  CAS  Google Scholar 

  30. P. Kringhøj, A.N. Larsen, and S.Y. Shirayev: Phys. Rev. Lett., 1996, vol. 76, pp. 3372–75.

    Article  Google Scholar 

  31. M. Onishi and H. Miura: Trans. JIM, 1977, vol. 18, pp. 107–12.

    CAS  Google Scholar 

  32. D. Shahriari, M.H. Sadeghi, and A. Akbarzadeh: Int. J. Adv. Manuf. Technol., 2009, vol. 45, pp. 841–50.

    Article  Google Scholar 

  33. Y. Wang, W.Z. Shao, L. Zhen, and B.Y. Zhang: Mater. Sci. Eng. A, 2001 vol. 528, pp. 3218–27.

    Google Scholar 

  34. C. Mary and M. Jahazi: Adv. Eng. Mater., 2008, vol. 10, pp. 573–78.

    Article  CAS  Google Scholar 

  35. M. Preuss, J.W.L. Pang, P.J. Withers, and G.J. Baxter: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3215–25.

    Article  CAS  Google Scholar 

  36. M.L. Kronberg and F.H. Wilson: TMS-AIME, 1949, vol. 185, pp. 501–14.

    Google Scholar 

  37. M.E. Nunn: 1st Int. Conf. on Innovation and Integration in Aerospace Sciences, Queen’s University, Belfast, Northern Ireland, United Kingdom, 2005.

  38. T.M. Simpson, A.R. Price, P.F. Browning, and M.D. Fitzpatrick: Advanced Technologies for Superalloy Affordability, TMS, Warrendale, PA, 2000, pp. 277–86.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support received from NSERC. The technical assistance of M. Guérin and E. Dalgaard for LFW of CMSX-486 is also greatly appreciated. One of the authors (OTO) is grateful to the University of Manitoba for the award of a Graduate Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Ojo.

Additional information

Manuscript submitted February 22, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ola, O.T., Ojo, O.A., Wanjara, P. et al. A Study of Linear Friction Weld Microstructure in Single Crystal CMSX-486 Superalloy. Metall Mater Trans A 43, 921–933 (2012). https://doi.org/10.1007/s11661-011-0928-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0928-0

Keywords

Navigation