Skip to main content
Log in

Effect of Temperature on the Loss of Ductility of S-135 Grade Drill Pipe Steel and Characterization of Corrosion Products in CO2 Containing Environments

  • Symposium: Fatigue & Corrosion Damage in Metallic Materials
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Evaluation of loss of ductility of the API S-135 grade drill pipe steel was studied at different temperatures from 298 K to 448 K (25 °C to 175 °C) in CO2 containing solution using a constant extension rate test in connection with a high-temperature/high-pressure autoclave. The effect of temperature on the composition and morphology of corrosion product layers of this steel were also investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results indicated the change of loss of ductility with temperature and the maximum loss of ductility was observed at 448 K (175 °C). XRD studies of the specimens revealed the formation of iron carbonate on the surface. SEM study of the surface of the specimens showed a rhombohedric crystalline iron carbonate layer above 373 K (100 °C), while no FeCO3 was detected at temperatures below 373 K (100 °C). Also, the crack size and depth of the cracks increased with temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. INCONEL is a trademark of Special Metals Corporation, New Hartford, NY.

  2. PHILIPS is a trademark of FEI Company, Hillsboro, OR.

References

  1. M.B. Kermani and A. Morshed: Corrosion, 2003, vol. 59 (8), pp. 659–83.

    Article  CAS  Google Scholar 

  2. J. Mougin, M.S. Cayard, R.D. Kane, B. Ghys, and C. Pichard: NACE, Houston, TX, 2005, paper no. 05085.

  3. M. Nordsveen, S. Nes˘ic′, R. Nyborg, and A. Stangeland: Corrosion, 2003, vol. 59 (5), pp. 443–56.

    Article  CAS  Google Scholar 

  4. M. Nordsveen, S. Nes˘ic′, R. Nyborg, and A. Stangeland: Corrosion, 2003, vol. 59 (6), pp. 489–97.

    Article  Google Scholar 

  5. S. Nes˘ic′ and K.-L.J. Lee: Corrosion, 2003, vol. 59 (7), pp. 616–28.

    Article  Google Scholar 

  6. S. Hernández, S. Nes˘ic′, G. Weckman, and V. Ghai: Corrosion, vol. 62 (6), pp. 467–83.

  7. A. Dugstad: NACE, Houston, TX, 1998, paper no. 98031.

  8. M. Singer, B. Brown, A. Camacho, and S. Nesic: NACE, Houston, TX, 2007, paper no. 07661.

  9. B. Mishra, S. Al-Hassan, D.L. Olson, and M.M. Salama: Corrosion, 1997, vol. 53 (11), pp. 852–60.

    Article  CAS  Google Scholar 

  10. B. Mishra, D.L. Olson, S. Al-Hassan, and M.M. Salama: Corrosion, 1998, vol. 54 (6), pp. 480–92.

    Article  Google Scholar 

  11. C. De Dewaard and D.E. Milliams: Corrosion, 1975, vol. 31 (5), pp. 177–81.

    CAS  Google Scholar 

  12. M. Honarvar Nazari, S.R. Allahkaram, and M.B. Kermani: J. Mater. Design, 2010, vol. 31, pp. 3559–63.

  13. J. Han, D. Young, H. Colijn, A. Tripathi, and S. Nesic: Ind. Eng. Chem. Res., 2009, vol. 48, pp. 6296–6302.

  14. W. Sun and S. Nesic: Corrosion, 2008, vol. 64 (4), pp. 334–47.

    Article  CAS  Google Scholar 

  15. S. Nešić: Corr. Sci., 2007, vol. 49 (12), pp. 4308–38.

  16. D.G. Li, Y.R. Feng, Z.Q. Bai, and M.S. Zheng: Appl. Surf. Sci., 2007, vol. 253, no. 20, pp. 8371–76.

    Article  CAS  Google Scholar 

  17. E. Abelev, J. Sellberg, T.A. Ramanarayanan, and S.L. Bernasek: J. Mater. Sci., 2009, vol. 44, pp. 6167–81.

    Article  CAS  Google Scholar 

  18. G.A. Zhangand Y.F. Cheng: Corr. Sci., 2009, vol. 51 (8), pp. 1589–95.

    Article  Google Scholar 

  19. J.C. Charbonnier, H. Margot-Marette, A.M. Brass, and M. Aucouturier: Metall. Trans. A, 1985, vol. 16A, pp. 935–44.

    CAS  Google Scholar 

  20. R.B. Chandler, M.J. Jellison, J.W. Skogsberg, and T. Moore: NACE, Houston, TX, 2002, paper no. 02056.

  21. R.D. Kane and M.S. Cayard: NACE, Houston, TX, 1998, paper no. 98274.

  22. M. Elboujdaini and R.V. Revie: J. Solid State Electrochem., 2009, vol. 13, pp. 1091–99.

    Article  CAS  Google Scholar 

  23. A.R. Mack: NACE, Houston, TX, 2001, paper no. 01076.

  24. B.-H. Choi and A. Chudnovsky: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 383–95.

    Article  Google Scholar 

  25. Y.-Z. Wang, R.W. Revie, and R.N. Parkins: NACE, Houston, TX, 1999, paper no. 99143.

  26. R.N. Parkins: Corrosion, 1996, vol. 52 (5), pp. 363–75.

    Article  CAS  Google Scholar 

  27. R.N. Parkins, W.K. Blanchard, Jr., and B.S. Delanty: Corrosion, 1994, vol. 50 (5), pp. 395–408.

    Article  Google Scholar 

  28. R.N. Parkins: NACE, Houston, TX, 2000, paper no. 00363.

  29. J.A. Colwell, B.N. Leis, and P.M. Singh: NACE, Houston, TX, 2005, paper no. 05161.

  30. R.N. Parkins and S. Zhou: Corr. Sci., 1997, vol. 39 (1), pp. 159–73.

    Article  CAS  Google Scholar 

  31. R.N. Parkins and S. Zhou: Corr. Sci., 1997, vol. 39 (1), pp. 175–91.

    Article  CAS  Google Scholar 

  32. B. Gu, W.Z. Yu, J.L. Luo, X. Mao: Corrosion, 1999, vol. 55 (3), pp. 312–18.

    Article  CAS  Google Scholar 

  33. B.Y. Fang, A. Atrens, J.Q. Wang, E.H. Han, Z. Zhu, and W. Ke: J. Mater. Sci., 2003, vol. 38, pp. 127–32.

  34. A. Contreras, A. Albiter, M. Salazar, and R. Perez: Mater. Sci. Eng. A, 2005, vol. 407, pp. 45–52.

    Article  Google Scholar 

  35. W. Yang, G. Li, H. Guo, J. Zhou, C. Huang, and J. Bai: Key Eng. Mater., 2005, vols. 297–300 pp. 939–44.

  36. “Standard Test Method Slow Strain Rate Test Method for Screening Corrosion-Resistant Alloys (CRAs) for Stress Corrosion Cracking in Sour Oilfield Service,” NACE, Houston, TX, TM0198-2004.

Download references

Acknowledgments

The authors express their appreciation for the support of the Petroleum Institute, Abu Dhabi, United Arab Emirates. They are also thankful to Devasco International Inc. (Welding Products) for their help and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arshad Bajvani Gavanluei.

Additional information

Manuscript submitted March 21, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bajvani Gavanluei, A., Mishra, B. & Olson, D.L. Effect of Temperature on the Loss of Ductility of S-135 Grade Drill Pipe Steel and Characterization of Corrosion Products in CO2 Containing Environments. Metall Mater Trans A 43, 2850–2856 (2012). https://doi.org/10.1007/s11661-011-0777-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0777-x

Keywords

Navigation