Skip to main content
Log in

Microwave Absorption Characteristics of Conventionally Heated Nonstoichiometric Ferrous Oxide

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The temperature dependence of the microwave absorption of conventionally heated nonstoichiometric ferrous oxide (Fe0.925O) was characterized via the cavity perturbation technique between 294 K and 1373 K (21 °C and 1100 °C). The complex relative permittivity and permeability of the heated Fe0.925O sample slightly change with temperature from 294 K to 473 K (21 °C to 200 °C). The dramatic variations of permittivity and permeability of the sample from 473 K to 823 K (200 °C to 550 °C) are partially attributed to the formation of magnetite (Fe3O4) and metal iron (Fe) from the thermal decomposition of Fe0.925O, as confirmed by the high-temperature X-ray diffraction (HT-XRD). At higher temperatures up to 1373 K (1100 °C), it is found that Fe0.925O regenerates and remains as a stable phase with high permittivity. Since the permittivity dominates the microwave absorption of Fe0.925O above 823 K (550 °C), resulting in shallow microwave penetration depth (~0.11 and ~0.015 m at 915 and 2450 MHz, respectively), the regenerated nonstoichiometric ferrous oxide exhibits useful microwave absorption capability in the temperature range of 823 K to1373 K (550 °C to 1100 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y.V. Bykov, K.I. Rybakov, and V.E. Semenov: J. Phys. D: Appl. Phys., 2001, vol. 34, pp. R55–R75.

    Article  CAS  Google Scholar 

  2. Y. Fang, J. Cheng, and D.K. Agrawal: Mater. Lett., 2004, vol. 58, pp. 498–501.

    Article  CAS  Google Scholar 

  3. Q. Yang, H. Zhang, Y. Liu, Q. Wen, and L. Jia: Mater. Lett., 2008, vol. 62, pp. 2647–50.

    Article  CAS  Google Scholar 

  4. D.M. Mingos and D.R. Baghurst: Chem. Soc. Rev., 1991, vol. 20, pp. 1–47.

    Article  CAS  Google Scholar 

  5. E.T. Thostenson and T.W. Chou: Appl. Sci. Manuf., 1999, vol. 30, pp. 1055–71.

    Article  Google Scholar 

  6. M. Yin, Z. Chen, B. Deegan, and S. O’Brieh: J. Mater. Res., 2007, vol. 22, pp. 1987–95.

    Article  CAS  Google Scholar 

  7. M. Gheisari, M. Mozaffari, M. Acet, and J. Amighian: J. Magn. Magn. Mater., 2008, vol. 320, pp. 2618–22.

    Article  CAS  Google Scholar 

  8. M. Mozaffari, M. Gheisari, M. Niyaifar, and J. Amighian: J. Magn. Magn. Mater., 2009, vol. 321, pp. 2981–84.

    Article  CAS  Google Scholar 

  9. L. Takacs: Nanostruct. Mater., 1993, vol. 2, pp. 241–49.

    Article  CAS  Google Scholar 

  10. J. Ding, W.F. Miao, E. Pirault, R. Street, and P.G. McCormick: J. Alloy. Compd., 1998, vol. 267, pp. 199–204.

    Article  CAS  Google Scholar 

  11. K. Tokumitsu and T. Nasu: Scripta Mater., 2001, vol. 44, pp. 1421–24.

    Article  CAS  Google Scholar 

  12. B. Andersson and J.O. Sletnes: Acta Cryst., 1977, vol. A33, pp. 268–76.

    CAS  Google Scholar 

  13. L. Broussard: J. Phys. Chem., 1969, vol. 73, pp. 1848–54.

    Article  CAS  Google Scholar 

  14. C.A. Pickles, J. Mouris, and R. Hutcheon: J. Mater. Res., 2005, vol. 20, pp. 18–29.

    Article  CAS  Google Scholar 

  15. R.M. Hutcheon, M. de Jong, and F.P. Adams: J. Microwave Power E., 1992, vol. 27, pp. 93–102.

  16. H. Shechter and P. Hillman: J. Appl. Phys., 1966, vol. 37, pp. 3043–47.

    Article  CAS  Google Scholar 

  17. D. Zhang, G. Weng, S. Gong, and D. Zhou: Mater. Sci. Eng. B: Adv., 2003, vol. 99, pp. 428–32.

    Article  Google Scholar 

  18. E.D. Thompson, E.P. Wohlfarth, and A.C. Bryan: Proc. Phys. Soc., 1964, vol. 83, pp. 59–70.

    Article  CAS  Google Scholar 

  19. A.C. Metaxas and R.J. Meredith: Industrial Microwave Heating, Peter Peregrinus, London, 1983, pp. 80–81.

    Google Scholar 

  20. Z. Peng, J.Y. Hwang, J. Mouris, R. Hutcheon, and X. Huang: ISIJ Int., 2010, vol. 50, pp. 1590–96.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors graciously appreciate the financial support from the Michigan Public Service Commission, U.P. Steel, and the United States Department of Energy (DOE). The authors also thank Microwave Properties North (www.mpn.ca) for performing the permittivity and permeability measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiann-Yang Hwang.

Additional information

Manuscript submitted October 13, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, Z., Hwang, JY., Mouris, J. et al. Microwave Absorption Characteristics of Conventionally Heated Nonstoichiometric Ferrous Oxide. Metall Mater Trans A 42, 2259–2263 (2011). https://doi.org/10.1007/s11661-011-0652-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0652-9

Keywords

Navigation