Skip to main content
Log in

On the Symmetry Among the Diffusional Transformation Products of Austenite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Information on the diffusional transformation products of austenite in high-carbon steels is reviewed and supplemented with new microscopic studies. A comparison with transformation products in low-carbon steels indicates that there is a symmetry with pearlite in the middle, where ferrite and cementite are equal partners, and with acicular ferrite or cementite on each side. They both form with a surface relief, and at lower temperatures, each one is the leading phase in a eutectoid microstructure, bainite and inverse bainite, respectively. However, there is an asymmetry because at low temperatures bainite appears in high-carbon steels but inverse bainite never appears in low-carbon steels. At a constant high carbon content, there is another kind of symmetry, which is related to temperature. At intermediate temperatures the eutectoid reaction results in spherical nodules in which the cementite constituent originates from Widmanstätten plates. It turns spiky at both higher and lower temperatures with the leading phase in the spikes being cementite at higher temperatures and ferrite at lower temperatures. In the first kind of symmetry, there is an abrupt change among the three reaction products; in the second kind of symmetry, there is a gradual change. Accepting that all the eutectoid microstructures form by diffusion of carbon, one may explain the existence of both symmetries by the variation of the ratio of the supersaturations of ferrite and cementite with carbon content and with temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40

Similar content being viewed by others

References

  1. M. Hillert: Jernkont. Ann., 1957, vol. 141, pp. 757-89.

    CAS  Google Scholar 

  2. C. Zener: Trans. AIME, 1946, vol. 167, pp. 550-83.

    Google Scholar 

  3. K.R. Kinsman and H.I. Aaronson: Metall. Trans., 1970, vol. 1, pp. 1485-88.

    CAS  Google Scholar 

  4. H.J. Lee, G. Spanos, G.J. Shiflet, and H.I. Aaronson: Acta Metall., 1988, vol. 36, pp. 1129-40.

    Article  CAS  Google Scholar 

  5. G. Spanos, H.S. Fang, D.S. Sarma, and H.I. Aaronson: Metall. Trans. A, 1990, vol. 21A pp. 1391-1411.

    CAS  Google Scholar 

  6. T. Ko and S.A. Cottrell: J. Iron Steel Inst., 1951, vol. 172, pp. 307-13.

    Google Scholar 

  7. K. Tsuya: J. Mech. Lab. Jpn., 1956, vol. 2, pp. 20-27.

    Google Scholar 

  8. J.M. Oblak and R.F. Hehemann: Transformation and Hardenability in Steels, Climax Molybdenum Co., Ann Arbor, MI, 1967, pp. 15-38.

    Google Scholar 

  9. A. Borgenstam, M. Hillert, and J. Ågren: Acta Mater., 2009, vol. 57, pp. 3242-52.

    Article  CAS  Google Scholar 

  10. A. Borgenstam, M. Hillert, and J. Ågren: Scripta Mater., 2010, vol. 62, pp. 75-77.

    Article  Google Scholar 

  11. J.O. Anderson, T. Helander, L. Höglund, P.F. Shi, and B. Sundman, CALPHAD, 2002, vol. 26, pp. 273-312.

    Article  Google Scholar 

  12. T. Ko: J. Iron Steel Inst., 1953, vol. 175, pp. 16-18.

    Google Scholar 

  13. G.R. Speich: Unpublished work, reproduced by H. Warlimont in a report from the Edgar C. Bain Laboratory for Fundamental Research, U.S. Steel Corporation, Monroeville, PA, 1961.

  14. J.-Y. Yan and W.-Z. Zhang: Unpublished report, Tsinghua University, Beijing, China, 2009.

  15. H. Modin and S. Modin: Jernkont. Ann., 1955, vol. 139, pp. 481-515.

    CAS  Google Scholar 

  16. S. Modin: Jernkont. Ann., 1958, vol. 142, pp. 37-80.

    CAS  Google Scholar 

  17. H. Modin and S. Modin: Microstructures in Three Isothermally Transformed Carbon Steels with High-carbon Contents, Meritförlaget, Stockholm, Sweden, 2000.

    Google Scholar 

  18. A.B. Greninger and A.R. Troiano: Trans. AIME, 1940, vol. 140, pp. 307-31.

    Google Scholar 

  19. A. Hultgren: Jernkont. Ann., in Swedish, 1951, vol. 135, p. 403, Kungl. Vetensk. Akad. Handl., in English, 1953, Stockholm, Sweden, vol. 4 (3).

  20. T.G. Nilan: Trans. AIME, 1967, vol. 239, pp. 898-909.

    CAS  Google Scholar 

  21. J.R. Vilella: Trans. AIME, 1940, vol. 140, pp. 332-34.

    Google Scholar 

  22. H. Modin and S. Modin: Metallurgical Microscopy, Butterworths, London, UK, 1973, p. 376.

    Google Scholar 

  23. H. Warlimont: The Iron and Steel Institute, Special Report 93, London, UK, 1965, pp.149–51.

  24. H. Okamoto and M. Oka: Metall. Trans. A, 1986, vol. 17A, pp. 1113-20.

    CAS  Google Scholar 

  25. M. Hillert: Decomposition of Austenite by Diffusional Processes, Eds. V.F. Zackay and H.I. Aaronson, Wiley, New York, NY, 1962, pp. 197-247.

    Google Scholar 

  26. M. Oka, H. Okamoto, and K. Ishida: Metall. Trans. A, 1990, vol. 21A, pp. 845-51.

    CAS  Google Scholar 

  27. E.R. Kuteliya: Fiz. Metal. Metalloved., 1969, vol. 28, pp. 853-57.

    CAS  Google Scholar 

  28. H. Okamoto and M. Oka: Metall. Trans. A, 1985, vol. 16A, pp. 2257-62.

    CAS  Google Scholar 

  29. H.K.D.H. Bhadeshia: Bainite in Steels, 2nd ed., University Press, Cambridge, MA, 2001.

    Google Scholar 

  30. M. Hillert: “The Growth of Ferrite, Bainite and Martensite,” Report, Swedish Inst. Metal Res. Stockholm 1960, reprinted in Thermodynamics and Phase Transformations, The selected works of Mats Hillert, J. Ågren, Y. Bréchet, C. Hutchinson, J. Philibert, and G. Purdy, eds., EDP Sciences, Les Ulis Cedex A, France, 2006, pp. 113–58.

  31. M. Hillert, L. Höglund, and J. Ågren: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3693-3700.

    Article  CAS  Google Scholar 

  32. M. De Graef, M.V. Kral, and M. Hillert: JOM, 2006, pp. 25–28.

Download references

Acknowledgments

This work was inspired by the metallographic atlas produced by Helfrid and Sten Modin. The authors are grateful for the permission to reproduce their micrographs for the current work. It was performed within the VINN Excellence Center Hero-m, financed by VINNOVA, the Swedish Governmental Agency for Innovation Systems, Swedish industry, and KTH (Royal Institute of Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annika Borgenstam.

Additional information

Manuscript submitted January 25, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borgenstam, A., Hedström, P., Hillert, M. et al. On the Symmetry Among the Diffusional Transformation Products of Austenite. Metall Mater Trans A 42, 1558–1574 (2011). https://doi.org/10.1007/s11661-010-0539-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0539-1

Keywords

Navigation