Skip to main content
Log in

Effect of Precipitates on the Development of P Orientation {011}\( \left\langle {566} \right\rangle \) in a Recrystallized Continuous Cast AA 3004 Aluminum Alloy after Cold Rolling

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The as-received hot band (2.54-mm thick) of a continuous cast (CC) AA 3004 Al alloy was cold rolled at reductions, ranging from 25 to 90 pct, and subsequently annealed at 510 °C for 4 hours. Some of these specimens had been annealed at 420 °C for 3 hours with a heating rate of 1 °C/min prior to cold rolling. It was found that the sample with the prior heat treatment exhibited a P orientation ({011}\( \left\langle {566} \right\rangle \)) of 28 pct in volume fraction, stronger than that (23 pct) in the sample without the prior heat treatment, after 90 pct cold rolling and final recrystallization. The transmission electron microscopy (TEM) observations revealed that the prior heat treatment generated very densely distributed Al6(Mn,Fe) precipitates, which could pin dislocations and grain boundaries in the alloy. The formation of stronger P texture in the sample with the prior heat treatment revealed that the P texture could also be developed due to dislocations pinned by the existing fine Al6(Mn,Fe) precipitates during recrystallization in the CC Al alloys that contained Mn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Li, W.C. Liu, T. Zhai, and E.A. Kenik: Scripta Mater., 2005, vol. 52, pp. 163–68.

    Article  CAS  Google Scholar 

  2. J.T. Liu, Y.S. Liu, and J.G. Morris: Mater. Sci. Technol., 2003, vol. 19, pp. 1498–1506.

    Article  CAS  Google Scholar 

  3. Y.L. Liu, Y. Liu, G. Liao, and J.G. Morris: Alum. Trans., 2000, vol. 2, pp. 97–106.

    MATH  CAS  Google Scholar 

  4. G. Liao, Y. Liu, Y.L. Liu, and J.G. Morris: Alum. Trans., 2000, vol. 2, pp. 319–27.

    CAS  Google Scholar 

  5. J.T. Liu and J.G. Morris: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2029–32.

    Article  ADS  CAS  Google Scholar 

  6. O. Engler, P. Yang, and X.W. Kong: Acta Mater., 1996, vol. 44, pp. 3349–69.

    Article  CAS  Google Scholar 

  7. O. Engler, H.E. Vatne, and E. Nes: Mater. Sci. Eng., 1996, vol. 44, pp. 1389–1411.

    Google Scholar 

  8. O. Engler, J. Hirsch, and K. Lucke: Acta Metall. Mater., 1995, vol. 43, pp. 121–38.

    CAS  Google Scholar 

  9. H.E. Vatne, O. Engler, and E. Nes: Mater. Sci. Technol., 1995, vol. 13, pp. 93–102.

    Google Scholar 

  10. O. Daaland and E. Nes: Acta Mater., 1996, vol. 44, pp. 1389–411.

    Article  CAS  Google Scholar 

  11. J.T. Liu, S.W. Banovic, R.J. Fields, and J.G. Morris: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1887–98.

    Article  ADS  CAS  Google Scholar 

  12. W.C. Liu and J.G. Morris: Scripta Mater., 2007, vol. 56, pp. 217–20.

    Article  CAS  Google Scholar 

  13. J. Hirsch, E. Nes, and K. Lucke: Acta Metall., 1987, vol. 35, pp. 427–38.

    Article  CAS  Google Scholar 

  14. O. Engler and K. Lucke: Scripta Mater., 1992, vol. 27, pp. 1527–32.

    Article  CAS  Google Scholar 

  15. O. Daaland and E. Nes: Acta Mater., 1996, vol. 44, pp. 1413–35.

    Article  CAS  Google Scholar 

  16. W.C. Liu and J.G. Morris: Scripta Mater., 2006, vol. 54, pp. 2095–99.

    Article  CAS  Google Scholar 

  17. O. Engler: Mater. Sci. Technol., 1996, vol. 12, pp. 859–72.

    ADS  CAS  Google Scholar 

  18. N.J. Owen, D.J. Field, and E.P. Butler: Mater. Sci. Technol., 1986, vol. 2, pp. 1217–22.

    CAS  Google Scholar 

  19. Q. Zeng, X. Wen, and T. Zhai: Mater. Sci. Technol., 2009, in press.

  20. L.G. Schulz: J. Appl. Phys., 1949, vol. 20, pp. 1033–36.

    Article  ADS  Google Scholar 

  21. M.J. Cai and W.B. Lee: Mater. Sci. Forum, 1994, vols. 157–162, pp. 327–32.

    Article  Google Scholar 

  22. D.T.L. Alexander and A.L. Greer: Phil. Mag., 2004, vol. 84, pp. 3071–83.

    Article  ADS  CAS  Google Scholar 

  23. D.T.L. Alexander and A.L. Greer: Mater. Sci. Technol., 2005, vol. 21, pp. 955–60.

    Article  CAS  Google Scholar 

  24. L. Chen, and J.G. Morris: Scripta Metall., 1984, vol. 18A. pp. 1365–70.

    Google Scholar 

  25. S. Saimoto and R.G. Kamat: Mater. Sci. Technol., 1992, vol. 8, pp. 869–74.

    CAS  Google Scholar 

  26. X.F. Xu, Y.M. Zhao, X.Y. Wen, and T. Zhai: Mater. Sci. Eng. A, 2005 vol. 394, pp. 376–84.

    Article  Google Scholar 

  27. J.X. Li, T. Zhai, M.D. Garratt, and G.H. Bray: Metall. Mater. Trans. A, 2005, vol. 36, pp. 2529–39.

    Article  Google Scholar 

  28. J. Li, Q. Zeng, X.Y. Wen, and T. Zhai: Mater. Sci. Technol., 2007, vol. 23 pp. 225–28.

    Article  CAS  Google Scholar 

  29. J.G. Morris and W.C. Liu: JOM, 2005, vol. 57, pp. 5744–47.

    Article  Google Scholar 

  30. Q. Zeng and T. Zhai: 2009, unpublished research.

  31. W.C. Liu and J.G. Morris: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2829–48.

    Article  ADS  CAS  Google Scholar 

  32. S. Tangen, K. Sjolatad, E. Nes, T. Furu, and K. Marthinsen: Mater. Sci. Forum, 2002, vols. 396–402, pp. 169–74.

    Google Scholar 

  33. O. Engler, X.W. Kong, and K. Lucke: Phil. Mag., 2001, vol. 81, pp. 534–70.

    Google Scholar 

  34. O. Engler, X.W. Kong, and K. Lucke: Acta Mater., 2001, vol. 49, pp. 1701–15.

    Article  CAS  Google Scholar 

  35. F.J. Humpherys: Acta Metall., 1977, vol. 25, pp. 1323–44.

    Article  Google Scholar 

  36. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, New York, NY, 2004.

    Google Scholar 

  37. Q. Zeng, E.A. Kenik, and T. Zhai: 2009, unpublished research.

  38. P.J. Hurley and F.J. Humphreys: Acta Mater., 2003, vol. 51, pp. 1087–1102.

    Article  CAS  Google Scholar 

  39. P.J. Hurley, P.S. Bate, and F.J. Humphreys: Acta Mater., 2003, vol. 51, pp. 4737–50.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was sponsored by the National Science Foundation under Grant No. 0413724. The TEM work reported in this article was conducted as part of the Oak Ridge National Laboratory’s SHaRE User Facility, which is sponsored by the United States Department of Energy, Office of Energy Efficiency and Renewable Energy, Industrial Technologies Program, Industrial Materials for the Future and the Division of Materials Science and Engineering, under Contract No. DE-AC05-00OR22725 with U.T. Battelle, LLC. The authors also thank Aleris International, for provision of the alloy studied in this project, and Dr. E.A. Kenik, Oak Ridge National Laboratory, for his assistance with the TEM experiments in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Zhai.

Additional information

Manuscript submitted November 9, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, Q., Wen, X. & Zhai, T. Effect of Precipitates on the Development of P Orientation {011}\( \left\langle {566} \right\rangle \) in a Recrystallized Continuous Cast AA 3004 Aluminum Alloy after Cold Rolling. Metall Mater Trans A 40, 2488–2497 (2009). https://doi.org/10.1007/s11661-009-9942-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9942-x

Keywords

Navigation