Skip to main content
Log in

Site Selection and Pseudo-Clustering Behaviors of Alloying Elements in Aluminum-Lean γ-TiAl Intermetallics

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Site selection and pseudo-clustering behaviors of the various M alloying elements in Al-lean Ti50Al50–X M X (X = 1, 2, 3, 4, and 5 at. pct) intermetallics have been investigated by means of the ordering energy-dependent and long-range-order forced fast Monte Carlo simulation method. The ordering energies have been calculated via pseudopotential approximation in the electronic theory of alloys up to the third coordination sphere (CS) taking the anisotropic nature of tetragonal L10-type structure of γ-TiAl into account. It was shown that the site occupation characteristics of the M alloying element atoms in γ-TiAl intermetallics are governed by the relative magnitude of partial ordering energies between Ti-M and Al-M atomic pairs. However, the sign of partial ordering energies of these atomic pairs at the first CS becomes important in determining the clustering behavior and controls the dissolution modes of alloying element atoms in the γ-TiAl matrix. The pseudo-clustering behavior of alloying elements reveals three dissolution modes, namely, random dissolution (mode I), planar clustering in two dimensions (mode II), and three-dimensional (3-D) clustering (mode III) of the M occupant atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E.S. Bumps and H.D. Kessler: J. Met. Trans. AIME, 1952, vol. 194, pp. 609–14.

    Google Scholar 

  2. J.B. McAndrew and H.D. Kessler: J. Met. Trans. AIME, 1956, vol. 8, pp. 1348–53.

    CAS  Google Scholar 

  3. Y.W. Kim: JOM, 1994, vol. 46 (7), pp. 30–39.

    CAS  Google Scholar 

  4. Y.W. Kim: JOM, 1995, vol. 47 (7), pp. 39–41.

    CAS  Google Scholar 

  5. D.M. Dimiduk: Mater. Sci. Eng. A, 1999, vol. 263, pp. 281–88.

    Article  Google Scholar 

  6. E.A. Loria: Intermetallics, 2000, vol. 8, pp. 1339–45.

    Article  CAS  Google Scholar 

  7. Y.L. Hao, R. Yang, Y.Y. Cui, and D. Li: Acta Mater., 2000, vol. 48, pp. 1313–24.

    Article  CAS  Google Scholar 

  8. R. Yang and Y.L. Hao: Scripta Mater., 1999, vol. 41, pp. 341–46.

    Article  CAS  Google Scholar 

  9. Y.W. Kim and D.M. Dimiduk: JOM, 1991, vol. 43, pp. 40–47.

    CAS  Google Scholar 

  10. B.J. Inkson, C.B. Boothroyd, and C.J. Humphreys: Acta Metall. Mater., 1993, vol. 41, pp. 2867–76.

    Article  CAS  Google Scholar 

  11. D.G. Konitzer, I.P. Jones, and H.L. Fraser: Scripta Metall., 1986, vol. 20, pp. 265–68.

    Article  CAS  Google Scholar 

  12. S. Kim, D. Nguyen-Manh, G.D.W. Smith, and D.G. Pettifor: Phil. Mag. A, 2000, vol. 80, pp. 2489–2508.

    Article  CAS  ADS  Google Scholar 

  13. V.S. Babu, A.S. Pavlovic, and M.S. Seehra: J. Mater. Res., 1993, vol. 8, pp. 989–94.

    Article  CAS  ADS  Google Scholar 

  14. X.F. Chen, R.D. Reviere, B.F. Oliver, and C.R. Brooks: Scripta Metall. Mater., 1992, vol. 27, pp. 45–49.

    Article  CAS  Google Scholar 

  15. H.L. Dang, C.Y. Wang, and T. Yu: J. Appl. Phys., 2007, vol. 101, pp. 083702–083709.

    Article  ADS  Google Scholar 

  16. Y.L. Hao, D.S. Xu, Y.Y. Cui, R. Yang, and D. Li: Acta Mater., 1999, vol. 47, pp. 1129–39.

    Article  CAS  Google Scholar 

  17. Y.L. Hao, R. Yang, Y.Y. Cui, and D. Li: Intermetallics, 2000, vol. 8, pp. 633–36.

    Article  CAS  Google Scholar 

  18. Y. Jinlong, X. Chuanyun, X. Shangda, and W. Kelin: Phys. Rev. B, 1992, vol. 46, p. 13709.

    Article  ADS  Google Scholar 

  19. R.D. Reviere, X.F. Chen, B.F. Oliver, C.R. Brooks, and J.R. Dunlap: Mater. Sci. Eng. A, 1993, vol. 172, pp. 95–100.

    Article  Google Scholar 

  20. Y. Song, Z.X. Guo, and R. Yang: J. Light Met., 2002, vol. 2, pp. 115–23.

    Article  Google Scholar 

  21. Y. Song, R. Yang, D. Li, Z.Q. Hu, and Z.X. Guo: Intermetallics, 2000, vol. 8, pp. 563–68.

    Article  CAS  Google Scholar 

  22. J. Wesemann, W. Falecki, and G. Frommeyer: Phys. Status Solidi A, 2000, vol. 177, pp. 319–29.

    Article  CAS  ADS  Google Scholar 

  23. W. Wolf, R. Podloucky, P. Rogl, and H. Erschbaumer: Intermetallics, 1996, vol. 4, pp. 201–09.

    Article  CAS  Google Scholar 

  24. C. Woodward and S. Kajihara: Acta Mater., 1999, vol. 47, pp. 3793–98.

    Article  CAS  Google Scholar 

  25. C.J. Rossouw, C.T. Forwood, M.A. Gibson, and P.R. Miller: Phil. Mag. A, 1996, vol. 74, pp. 77–102.

    Article  CAS  ADS  Google Scholar 

  26. C.J. Rossouw, C.T. Forwood, M.A. Gibson, and P.R. Miller: Phil. Mag. A, 1996, vol. 74, pp. 57–76.

    Article  CAS  ADS  Google Scholar 

  27. A.A. Katsnelson, A.O. Mekhrabov, and V.M. Silonov: Fiz. Metal. Metalloved., 1981, vol. 52, pp. 661–62.

    CAS  Google Scholar 

  28. A.O. Mekhrabov and M. Doyama: Phys. Status Solidi B, 1984, vol. 126, pp. 453–58.

    Article  CAS  Google Scholar 

  29. A.O. Mekhrabov, Z.M. Babaev, A.A. Katsnelson, and Z.A. Matysina: Fiz. Metal. Metalloved., 1986, vol. 61, pp. 1089–93.

    CAS  Google Scholar 

  30. A.O. Mekhrabov, A. Ressamoglu, and T. Ozturk: J. Alloys Compd., 1994, vol. 205, pp. 147–55.

    Article  CAS  Google Scholar 

  31. A.O. Mekhrabov, M.V. Akdeniz, and M.M. Arer: Acta Mater., 1997, vol. 45, pp. 1077–83.

    Article  CAS  Google Scholar 

  32. M.V. Akdeniz and A.O. Mekhrabov: Acta Mater., 1998, vol. 46, pp. 1185–92.

    Article  CAS  Google Scholar 

  33. A.O. Mekhrabov and M.V. Akdeniz: Acta Mater., 1999, vol. 47, pp. 2067–75.

    Article  CAS  Google Scholar 

  34. A.O. Mekhrabov and M.V. Akdeniz: Metall. Mater. Trans. A., 2003, vol. 34A, pp. 721–34.

    CAS  ADS  Google Scholar 

  35. A.O. Mekhrabov and M.V. Akdeniz: Model. Simul. Mater. Sci. Eng., 2007, vol. 15, pp. 1–12.

    Article  CAS  ADS  Google Scholar 

  36. J. Hubbard: Proc. R. Soc. A, 1957, vol. 240, pp. 539–60.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. A.O.E. Animalu: Phys. Rev. B, 1973, vol. 8, pp. 3542–54.

    Article  CAS  ADS  Google Scholar 

  38. W.B. Pearson: A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon, New York, NY, 1958, pp. 144–45.

    Google Scholar 

  39. J.M. Cowley: J. Appl. Phys., 1950, vol. 21, pp. 24–30.

    Article  CAS  ADS  Google Scholar 

  40. B.E. Warren, B.L. Averbach, and B.W. Roberts: J. Appl. Phys., 1951, vol. 22, pp. 1493–96.

    Article  CAS  ADS  Google Scholar 

  41. U. Gahn and W. Pitsch: Acta Metall., 1989, vol. 37, pp. 2455–62.

    Article  CAS  Google Scholar 

  42. U. Gahn, W. Pitsch: Acta Metall. Mater., 1990, vol. 38, pp. 1863–70.

    Article  CAS  Google Scholar 

  43. M. Matsumoto and T. Nishimura: ACM Trans. Model. Comput. Simul., 1998, vol. 8, pp. 3–30.

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported through The Scientific and Technological Research Council of Turkey, TUBITAK, Project No. MAG-COST-535 (104M323), which the authors gratefully acknowledge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vedat Akdeniz.

Additional information

Manuscript submitted December 19, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aykol, M., Mekhrabov, A.O. & Vedat Akdeniz, M. Site Selection and Pseudo-Clustering Behaviors of Alloying Elements in Aluminum-Lean γ-TiAl Intermetallics. Metall Mater Trans A 41, 267–274 (2010). https://doi.org/10.1007/s11661-009-0085-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0085-x

Keywords

Navigation