Skip to main content
Log in

Thermal Behavior and Microstructure Evolution during Laser Deposition with Laser-Engineered Net Shaping: Part II. Experimental Investigation and Discussion

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The thermal behavior during laser-engineered net shaping (LENS) processing was numerically simulated using the alternate direction explicit finite difference method in Part I of this work. In this article, Part II, the numerical simulation results were compared to experimental results obtained with LENS-deposited 316L stainless steel. In particular, the cooling rate that is present during LENS deposition was established on the basis of dendrite arm spacing (DAS) measurements with and without a melt pool sensor (MPS) and a Z-height control (ZHC) subsystem. The microstructure of the deposited materials was characterized and analyzed, and the corresponding microhardness was measured as a function of distance from the substrate. The influence of thermal history on microstructure evolution was analyzed and discussed based on both modeling and experimental results. The results discussed in this article suggest relatively good agreement between experiments and modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. LENS is a trademark of Sandia National Laboratories, and is commercialized by Optomec, Inc., Albuquerque, NM.

  2. PHILIPS is a trademark of Philips Electronic Instruments Corp., Mahwah, NJ.

References

  1. B. Zheng, Y. Zhou, J.E. Smugeresky, J.M. Schoenung, and E.J. Lavernia: Metall. Mater. Trans. A, 2008, vol. 39A, DOI: 10.1007/s11661-008-9557-7.

  2. S.A. David, J.M. Vitek, T.L. Hebble: Weld. J., 1987, vol. 66 (10), pp. 289–300

    Google Scholar 

  3. J.W. Elmer, S.M. Allen, T.W. Eager: Metall. Mater. Trans. A, 1989, vol. 20A, pp. 2117–31

    CAS  Google Scholar 

  4. W. Hofmeister, M. Griffith, M. Ensz, J. Smugeresky: JOM, 2001, vol. 53, pp. 30–34

    Article  CAS  Google Scholar 

  5. J.E. Smugeresky, B. Zheng, Y. Zhou, and E.J. Lavernia: TMS’06, San Antonio, TX, Mar. 12–16, 2006

  6. B. Zheng, Y. Zhou, J.E. Smugeresky, and E.J. Lavernia: Proc. Powder Metall., 2006, pp. 81–94

  7. I.C. Stone, P. Tsakiropoulos: Int. J. Rapid Solidification, 1992, vol. 7, pp. 177–90

    CAS  Google Scholar 

  8. E.J. Lavernia: Ph.D. Dissertation, MIT, Cambridge, MA, 1986, p. 58.

  9. C.H. Cáceres, C.J. Davidson, J.R. Griffiths, C.L. Newton: Mater. Sci. Eng. A, 2002, vol. 325, pp. 344–55

    Article  Google Scholar 

  10. C. Labrecque, R. Angers, R. Tremblay, D. Dubé: Can. Metall. Q., 1997, vol. 36, pp. 169–75

    Article  CAS  Google Scholar 

  11. D. Dube, A. Couture, Y. Carbonneau, M. Fiset, R. Angers, R. Tremblay: Int. J. Cast Met. Res., 1998, vol. 11, pp. 139–44

    CAS  Google Scholar 

  12. I.C. Stone, P. Tsakiropoulos: Int. J. Rapid Solidification, 1992, vol. 7, pp. 177–90

    CAS  Google Scholar 

  13. H. Mizukami, T. Suzuki, T. Umeda: Tetsu-to-Hagané, 1992, vol. 78, pp. 580–86

    CAS  Google Scholar 

  14. P.A. Joly, R. Mehrabian: J. Mater. Sci., 1974, vol. 9, pp. 1446–55

    Article  CAS  Google Scholar 

  15. S. Katayama and A. Matsunawa: Proc. ICALEO, 1984, pp. 60–67

  16. M.C. Flemings: Solidification Processing, McGraw-Hill, New York, NY, 1974, pp. 148–54

    Google Scholar 

  17. M.E. Glicksman, P.W. Voorhees: Metall. Trans. A, 1984, vol. 15A, pp. 995–1001

    CAS  Google Scholar 

  18. W. Hofmeister, M. Wert, J. Smugeresky, J.A. Philliber, M. Griffith, and M. Ensz: JOM, 1999, vol. 51, JOM-e online at http://www.tms.org/pubs/journals/JOM/9907/Hofmeister/Hofmeister-9907.html

  19. M.L. Griffith, M.T. Ensz, J.D. Puskar, C.V. Robino, J.A. Brooks, J.A. Philliber, J.E. Smugeresky, W.H. Hofmeister: MRS Symp. Y. Proc., 2000, vol. 625, pp. 9–20

    CAS  Google Scholar 

  20. M.L. Griffith, M.E. Schlienger, L.D. Harwell, M.S. Oliver, M.D. Baldwin, M.T. Ensz, J.E. Smugeresky, M. Essien, J. Brooks, C.V. Robino, W.H. Hofmeister, M.J. Wert, D.V. Nelson: J. Mater. Design, 1999, vol. 20 (6), pp. 107–14

    Article  Google Scholar 

  21. S.M. Kelly, S.L. Kampe: Metall. Mater. Trans. A, 2004, vol. 35A, pp.1861–67

    Article  CAS  Google Scholar 

  22. E.J. Lavernia, J.D. Ayers, T.S. Srivatsan: Int. Mater. Rev., 1992, vol. 37, pp. 1–44

    CAS  Google Scholar 

  23. R.W. Cahn, P. Haasen: Physical Metallurgy, 3rd ed., Elsevier BV, New York, NY, 1983, p. 856

    Google Scholar 

  24. J.E. Smugeresky, B. Zheng, Y. Zhou, and E.J. Lavernia: TMS’05, San Francisco, CA, Feb. 13–17, 2005

  25. http://www.azom.com/details.asp?ArticleID=2382#_Key_Properties

  26. M.J. Donachie: Titanium, A Technical Guide, 2nd ed., ASM INTERNATIONAL, Metals Park, OH, 2000, pp. 13–24

    Google Scholar 

  27. E.J. Lavernia, Y. Wu: Spray Atomization and Deposition, John Wiley & Sons, Inc., New York, NY, 1996, pp. 311–14

    Google Scholar 

  28. Q. Xu, V.V. Gupta, E.J. Lavernia: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 527–39

    Article  CAS  Google Scholar 

  29. A. Vasinonta, J.L. Beuth and R. Ong: Proc. 12th Ann. SFF Symp., Austin, TX, Aug. 2001, pp. 432–40

  30. J.A. Brooks, C.V. Robino, T. Headley, S. Goods, R.C. Dykhuizen, and M.L. Griffith: SFF Symp., Austin, TX, Aug. 1999, p. 375

  31. W.P. Liu, J.N. DuPont: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1133–40

    CAS  Google Scholar 

  32. Y. Xiong, B. Zheng, J.E. Smugeresky, L. Ajdelsztajn, and J.M. Schoenung: MS&T’05, Pittsburgh, PA, Sept. 25–28, 2005

  33. D.F. Susan, J.D. Puskar, J.A. Brooks, C.V. Robino: Mater. Characterization, 2006, vol. 57 (1), pp. 36–43

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation (Grant No. DMI-0423695) and by NASA Marshall (Contract No. NNM06AB11C). Work at Sandia National Laboratories is supported by the United States Department of Energy (Contract DE-AC04-94AL85000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Zheng.

Additional information

Manuscript submitted October 22, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, B., Zhou, Y., Smugeresky, J. et al. Thermal Behavior and Microstructure Evolution during Laser Deposition with Laser-Engineered Net Shaping: Part II. Experimental Investigation and Discussion. Metall Mater Trans A 39, 2237–2245 (2008). https://doi.org/10.1007/s11661-008-9566-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9566-6

Keywords

Navigation