Skip to main content
Log in

Large strain deformation field in machining

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Measurement of strain field in the primary deformation zone is of major interest for development of machining as an experimental technique for studying phenomena associated with large strain deformation. A study has been made of the primary deformation zone and tool-chip interface in planestrain (two-dimensional) machining of metals. The use of a high-speed, charge-coupled device (CCD) imaging system in conjunction with an optically transparent, sapphire cutting tool has enabled characteristics of the deformation field such as velocity, strain, and material flow, to be obtained at high spatial and temporal resolution. The velocity distributions in the primary deformation zone and along the tool rake face have been obtained by applying a particle image velocimetry (PIV) technique to sequences of high-speed images of the chip-tool interface taken through the transparent tool, and of the primary deformation zone recorded from a side of the workpiece. A procedure is presented and demonstrated for determining the strain and strain rate distributions in the primary deformation zone. The measurements have provided data about the variations of velocity, strain rate, and strain, in and around the cutting edge and primary deformation zone; confirmed the existence of a region of retarded sliding in the region of intimate contact between tool and chip; and highlighted the occurrence of a region of dead metal ahead of the cutting edge when cutting with a negative rake angle tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.J. Apps, J.R. Bowen, and P.B. Prangnell: Acta Mater., 2003, vol. 51, pp. 2811–22.

    CAS  Google Scholar 

  2. Z. Horita, T. Fujinami, M. Nemoto, and T.G. Langdon: Metall. Mater. Trans. A, 2000, vol. 31, pp. 691–701.

    Article  Google Scholar 

  3. V.M. Segal, V.I. Resnikov, A.E. Drobyshevsky, and V. Kopylov: Russ. Metall., 1981, vol. 1, pp. 99–105.

    Google Scholar 

  4. T.L. Brown, S. Swaminathan, S. Chandrasekar, W.D. Compton, A.H. King, and K.P. Trumble: J. Mater. Res., 2002, vol. 17, pp. 2484–88.

    CAS  Google Scholar 

  5. M.C. Shaw: Metal Cutting Principles, 2nd ed., Clarendon Press, Oxford, United Kingdom, 2004, pp. 26–61.

    Google Scholar 

  6. P.L.B. Oxley: The Mechanics of Machining: an Analytical Approach to Assessing Machinability, 1st ed., John Wiley & Sons, New York, NY, 1989, pp. 23–73.

    Google Scholar 

  7. S. Kobayashi and E.G. Thomsen: J. Eng. Industry, 1959, vol. 81, pp. 251–62.

    Google Scholar 

  8. M.R. Shankar, S. Chandrasekar, W.D. Compton, and A.H. King: Mater. Sci. Eng., A, 2005, vols. 410–411, pp. 364–68.

    Google Scholar 

  9. S. Swaminathan, M.R. Shankar, S. Lee, J. Hwang, A.H. King, R.F. Kezar, B.C. Rao, T.L. Brown, S. Chandrasekar, W.D. Compton, and K.P. Trumble: Mater. Sci. Eng., A, 2005, vol. 410, pp. 358–63.

    Google Scholar 

  10. T.D. Marusich and M. Ortiz: Int. J. Num. Methods Eng., 1995, vol. 38, pp. 3675–94.

    Article  Google Scholar 

  11. V. Madhavan, S. Chandrasekar, and T.N. Farris: J. Appl. Mech., 2000, vol. 67, pp. 128–39.

    Article  Google Scholar 

  12. J.S. Strenkowski and J.T. Carroll: ASME J. Eng. Industry, 1985, vol. 107, pp. 349–54.

    Article  Google Scholar 

  13. M.G. Stevenson and P.L.B. Oxley: Proc. Institution of Mechanical Engineers, 1969–1970, vol. 184, pp. 56–76.

    Google Scholar 

  14. W.F. Hastings: CIRP Annals, 1967, vol. 15, pp. 109–16.

    Google Scholar 

  15. T.H.C. Childs: Int. J. Mech. Sci., 1971, vol. 13, pp. 373–87.

    Article  Google Scholar 

  16. S. Ramalingam: Ph.D. Thesis, University of Illinois, Urbana, Champaign, IL, 1967.

    Google Scholar 

  17. J.T. Black and J.M. Huang: ASME Manufacturing Sci. Eng., 1995, MED-vol. 2-1/MH-vol. 3-1, pp. 283–302.

    Google Scholar 

  18. K. Nakayama: Bull. Faculty Eng., 1958, vol. 7, pp. 1–26.

    Google Scholar 

  19. E.D. Doyle, J.G. Horne, and D. Tabor: Proc. R. Soc. London A, 1979, vol. 366, pp. 173–83.

    Article  CAS  Google Scholar 

  20. V. Madhavan, S. Chandrasekar, and T.N. Farris: J. Tribol., 2002, vol. 124, pp. 617–26.

    Article  CAS  Google Scholar 

  21. B. Ackroyd, S. Chandrasekar, and W.D. Compton: J. Tribol., 2003, vol. 125, pp. 649–60.

    Article  Google Scholar 

  22. E.G. Thomsen, C.T. Yang, and S. Kobayashi: Mechanics of Plastic Deformation in Metal Processing, 1st ed., The Macmillan Company, New York, NY, 1965, pp. 30–105.

    Google Scholar 

  23. R.J. Adrian: Laser Anemometry in Fluid Mechanics, 1998, vol. 3, pp. 115–29.

    Google Scholar 

  24. M. Raffel and C. Willert: Particle Image Velocimetry, 1st ed., Springer-Verlag, New York, NY, 1998. pp. 105–45.

    Google Scholar 

  25. N.T. Nguyen and S.T. Wereley: Fundamentals and Applications of Microfluidics, 1st ed., Artech House, Boston, MA, 2002, pp. 137–200.

    Google Scholar 

  26. H.E. Enahoro and P.L.B. Oxley: J. Mech. Eng. Sci., 1966, vol. 8, pp. 36–41.

    Google Scholar 

  27. D.C. Drucker: J. Appl. Phys., 1949, vol. 20, pp. 1013–21.

    Article  Google Scholar 

  28. V. Narayanan, K. Krishnamurthy, S. Chandrasekar, and T.N. Farris: Proc. ASME IMECE, Symp. Fundamental Issues in Machining, New York, NY, 2001.

  29. J. Hwang, S. Kompella, S. Chandrasekar, and T.N. Farris: J. Tribol., 2003, vol. 125, pp. 377–83.

    Article  Google Scholar 

  30. N.A. Fleck, G.M. Muller, M.F. Ashby, and J.W. Hutchinson: Acta Metall. Mater., 1994, vol. 42, pp. 475–87.

    Article  CAS  Google Scholar 

  31. H. Gao, Y. Huang, W.D. Nix, and J.W. Hutchinson: J. Mech. Phys. Solids, 1999, vol. 47, pp. 1239–63.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Hwang, J., Shankar, M.R. et al. Large strain deformation field in machining. Metall Mater Trans A 37, 1633–1643 (2006). https://doi.org/10.1007/s11661-006-0105-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-0105-z

Keywords

Navigation