Skip to main content

Advertisement

Log in

Deformation and fracture in laser-shocked NiAl single crystals and bicrystals

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Oriented single crystals and a [3 4 55]/[5 7 17] random bicrystal were used to study dynamic behavior in NiAl due to laser-driven shocks at moderate pressures (3 to 20 GPa). Disks 5 mm in diameter and 100- to 400-µm thick were tested at the TRIDENT facility at Los Alamos National Laboratory (LANL). Particle velocities were measured using laser velocimetry, which showed that shock-speed variations with orientation in monocrystals were consistent with anisotropic elasticity predictions, whereas the bicrystal showed spatial and temporal variations in the velocity field due to the grain boundary. The shocks displayed strong elastic precursors at the free surface, which agrees with transmission electron microscopy observations of a low dislocation density in 〈100〉 and 〈111〉 monocrystals and in the [5 7 17] grain of the bicrystal. The latter developed a damage zone in the [3 4 55] grain, with cracking and slip present close to the boundary. Orientation-imaging microscopy showed that the boundary produced in-plane misorientation gradients in the bicrystal and that all specimens developed through-thickness lattice rotations, which were more pronounced for the 〈111〉 and 〈110〉 loading axes. High rotations occurred within 20 µm of the shocked surface and decreased toward the bulk, indicating a fast decay of the plastic shock wave, which explains the strong elastic precursors observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.J. Maudlin and S.K. Schiferl: Comput. Meth. Appl. Mech. Eng., 1996, vol. 131, pp. 1–30.

    Article  Google Scholar 

  2. S.P. Clancy, M.W. Burkett, and P.J. Maudlin: J. Phys. IV, 1998, vol. 7, pp. 735–40.

    Google Scholar 

  3. P.J. Maudlin, J.F. Bingert, J.W. House, and S.R. Chen: Int. J. Plast., 1999, vol. 15, pp. 139–66.

    Article  CAS  Google Scholar 

  4. S.K. Schiferl and P.J. Maudlin: Comput. Meth. Appl. Mech. Eng., 1997, vol. 143, pp. 249–70.

    Article  Google Scholar 

  5. C.N. Tomé, P.J. Maudlin, R.A. Lebensohn, and G.C. Kaschner: Acta Mater., 2001, vol. 49, pp. 308–96.

    Article  Google Scholar 

  6. M.A. Zikry and M. Kao: J. Mech. Phys. Solids, 1996, vol. 44, pp. 176–98.

    Google Scholar 

  7. Y.I. Mescheryakov, N.A. Mahutov, and S.A. Atroshenko: J. Mech. Phys. Solids, 1994, vol. 42, pp. 1435–57.

    Article  CAS  Google Scholar 

  8. S.I. Anisimov, A.M. Prokhorov, and V.E. Fortov: Sov. Phys. Usp., 1984, vol. 27, pp. 181–203.

    Article  Google Scholar 

  9. A.V. Bushman, G.I. Kanel, A.L. Ni, and V.E. Fortov: Intense Dynamic Loading of Condensed Matter, Taylor and Francis, Washington, DC, 1993.

    Google Scholar 

  10. M.A. Meyers, F. Gregori, B.K. Kad, M.S. Schneider, D.H. Kalantar, B.A. Remington, G. Ravichandran, T. Beohly, and J.S. Wark: Acta Mater., 2003, vol. 51, pp. 1211–28.

    Article  CAS  Google Scholar 

  11. V.E. Fortov, V.V. Kostin, and S. Eliezer: J. Appl. Phys., 1991, vol. 70, pp. 4524–31.

    Article  CAS  Google Scholar 

  12. P. Peralta and C. Laird: Acta Mater., 1997, vol. 45, pp. 5129–43.

    Article  CAS  Google Scholar 

  13. R.D. Noebe, R.R. Bowman, and M.V. Nathal: Int. Mater. Rev., 1993, vol. 38, pp. 193–232.

    CAS  Google Scholar 

  14. S.A. Maloy and G.T. Gray: MRS Fall Meeting, Boston, MA, 1995.

  15. S.A. Maloy, G.T. Gray, and R. Darolia: Mater. Sci. Eng., 1995, vol. A192, pp. 249–54.

    Google Scholar 

  16. D.B. Miracle: Acta Metall. Mater., 1993, vol. 41, pp. 649–84.

    Article  CAS  Google Scholar 

  17. T.B. Reed and E.R. Pollard: J. Cryst. Growth, 1968, vol. 2, pp. 243–47.

    Article  CAS  Google Scholar 

  18. J. Lindl: Phys. Plasmas, 1995, vol. 2, p. 3933.

    Article  CAS  Google Scholar 

  19. M.A. Meyers, M.S. Schneider, B.K. Kad, V.A. Lubarda, F. Gregori, D.H. Kalantar, and B.A. Remington: J. Phys. IV, 2003, vol. 110, pp. 851–56.

    Article  CAS  Google Scholar 

  20. M.J.P. Musgrave: Rep. Progr. Phys., 1959, vol. 22, pp. 74–96.

    Article  CAS  Google Scholar 

  21. F. Chu, M. Lei, S.A. Maloy, J.J. Petrovic, and T.E. Mitchell: Acta Mater., 1996, vol. 44, pp. 3035–48.

    Article  CAS  Google Scholar 

  22. R. Becker: Int. J. Plast., 2004, vol. 20, pp. 1983–2006.

    Article  Google Scholar 

  23. M.A. Meyers: Mater. Sci. Eng., 1977, vol. 30, pp. 99–111.

    Article  CAS  Google Scholar 

  24. J. Qu and J.L. Bassani: J. Appl. Mech., 1993, vol. 60, pp. 422–31.

    Google Scholar 

  25. J.L. Bassani and T.Y. Wu: Proc. R. Soc. London A, 1991, vol. 435, pp. 21–41.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peralta, P., Loomis, E., Lim, C.H. et al. Deformation and fracture in laser-shocked NiAl single crystals and bicrystals. Metall Mater Trans A 36, 1459–1469 (2005). https://doi.org/10.1007/s11661-005-0238-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0238-5

Keywords

Navigation