Skip to main content
Log in

Linking first-principles energetics to CALPHAD: An application to thermodynamic modeling of the Al-Ca binary system

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

First-principles (FP) energetics of both the constituent elements and the compounds in the Al-Ca binary system are used in the CALPHAD (CALculation of PHase Diagrams) approach of thermodynamic modeling. First-principles calculations are performed using both an all-electron full-potential linearized augmented plane-wave method, as well as an ultrasoft pseudopotential/plane wave method. We perform calculations of T=0 ground state total energies of the pure Al and Ca in fcc, bcc, and hcp structures, and the binary compounds in their observed crystal structures. Al4Ca, Al14Ca13, and Al3Ca8 are modeled in CALPHAD as simple stoichiometric compounds; however, the Laves C15 compound, Al2Ca, is modeled using two sublattices (Al,Ca)2(Al,Ca)1, necessitating first-principles energies of both the stable Al2Ca compound as well as the three nonstable Al2Al, AlCa2, and Ca2Ca compounds. From these total energies, we obtain the formation enthalpies of all the binary compounds that are then used to assist in evaluating the Gibbs energy functions for the individual phases. The entropy contribution in the Gibbs energy function for each individual compound is obtained via the observed equilibria with the liquid phase. We provide a complete thermodynamic description of the Al-Ca binary system, evaluated by this combined CALPHAD-FP approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Ozturk, L.Q. Chen, and Z.K. Liu: J. Alloys Compounds, 2002, vol. 340 pp. 199–206.

    Article  CAS  Google Scholar 

  2. B.Q. Huang and J.D. Corbett: Inorg. Chem., 1998, vol. 37, pp. 5827–33.

    Article  CAS  Google Scholar 

  3. D. Kevorkov and R. Schmid-Fetzer: Z. Metallkd., 2001, vol. 92, pp. 946–52.

    CAS  Google Scholar 

  4. M. Hansen and K. Anderko: Constitution of Binary Alloys, 2nd ed., McGraw-Hill, New York, NY, 1958.

    Google Scholar 

  5. V.P. Itkin, C.B. Alcock, P.J. van Ekeren, and H.A.J. Oonk: Bull. Alloy Phase Diagrams, 1988, vol. 9, pp. 652–57.

    Google Scholar 

  6. H. Nowotny and A. Mohrnheim: Z. Krist., 1939, vol. A100, pp. 540–42.

    Google Scholar 

  7. H. Nowotny, E. Wormnes, and A. Mohrnheim: Z. Metallkd., 1940, vol. 32, pp. 39–42.

    CAS  Google Scholar 

  8. D. Kevorkov, R. Schmid-Fetzer, A. Pisch, F. Hodaj, and C. Colinet: Z. Metallkd., 2001, vol. 92, pp. 953–58.

    CAS  Google Scholar 

  9. C. Wolverton, X.Y. Yan, R. Vijayaraghavan, and V. Ozolins: Acta Mater., 2002, vol. 50, pp. 2187–97.

    Article  CAS  Google Scholar 

  10. B. Jansson: Trita-Mac-0234, Royal Institute of Technology, Stockholm, 1984.

    Google Scholar 

  11. G.K.H. Madsen, P. Blaha, K. Schwarz, E. Sjostedt, and L. Nordstrom: Phys. Rev. B, 2001, vol. 64, p. 195134.

    Article  Google Scholar 

  12. E. Sjostedt, L. Nordstrom, and D.J. Singh: Solid State Commun., 2000, vol. 114, pp. 15–20.

    Article  CAS  Google Scholar 

  13. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and j. Luitz: WIEN2k: An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, revised ed., Wien, Austria, 2001.

  14. G. Kresse and J. Hafner: Phys. Rev. B, 1993, vol. 47, pp. 558–61.

    Article  CAS  Google Scholar 

  15. G. Kresse: Thesis, Technische Universitat, Wien, 1993.

    Google Scholar 

  16. G. Kresse and J. Furthmuller: Phys. Rev. B, 1996, vol. 54, pp. 11169–11186.

    Article  CAS  Google Scholar 

  17. G. Kresse and J. Furthmuller: Comput. Mater. Sci., 1996, vol. 6, pp. 15–50.

    Article  CAS  Google Scholar 

  18. P. Hohenberg and W. Kohn: Phys. Rev., 1964, vol. 136B, pp. 864–71.

    Article  Google Scholar 

  19. W. Kohn and L.J. Sham: Phys. Rev., 1965, vol. 140, pp. A1133-A1138.

    Article  Google Scholar 

  20. J.P. Perdew and Y. Wang: Phys. Rev. B, 1992, vol. 45, pp. 13244–13249.

    Article  Google Scholar 

  21. D.M. Ceperley and B.J. Alder: Phys. Rev. Lett., 1980, vol. 45, pp. 566–69.

    Article  CAS  Google Scholar 

  22. J.P. Perdew, K. Burke, and M. Ernzerhof: Phys. Rev. Lett., 1996, vol. 77, pp. 3865–68.

    Article  CAS  Google Scholar 

  23. J.P. Perdew and A. Zunger: Phys. Rev. B, 1981, vol. 23, pp. 5048–79.

    Article  CAS  Google Scholar 

  24. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais: Phys. Rev. B, 1992, vol. 46, pp. 6671–87.

    Article  CAS  Google Scholar 

  25. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais: Phys. Rev. B, 1993, vol. 48, p. 4978.

    Article  CAS  Google Scholar 

  26. D. Vanderbilt: Phys. Rev. B, 1990, vol. 41, pp. 7892–95.

    Article  Google Scholar 

  27. G. Kresse and J. Hafner: J. Phys.-Condes. Matter, 1994, vol. 6, pp. 8245–57.

    Article  CAS  Google Scholar 

  28. H.J. Monkhorst and J.D. Pack: Phys. Rev. B, 1976, vol. 13, pp. 5188–92.

    Article  Google Scholar 

  29. B. Sundman, B. Jansson, and J.O. Andersson: CALPHAD, 1985, vol. 9, pp. 153–90.

    Article  CAS  Google Scholar 

  30. A.T. Dinsdale: CALPHAD, 1991, vol. 15, pp. 317–425.

    Article  CAS  Google Scholar 

  31. A.T. Kister and O. Redlich: Ind. Eng. Chem., 1948, vol. 40, pp. 345–48.

    Article  Google Scholar 

  32. I. Ansara, T.G. Chart, A.F. Guillermet, F.H. Hayes, U.R. Kattner, D.G. Pettifor, N. Saunders, and K. Zeng: CALPHAD, 1997, vol. 21, pp. 171–218.

    Article  CAS  Google Scholar 

  33. Z.-K. Liu and Y.A. Chang: CALPHAD, 1999, vol. 23, pp. 339–56.

    Article  CAS  Google Scholar 

  34. J.G.C. Neto, S.G. Fries, H.L. Lukas, S. Gama, and G. Effenberg: CALPHAD, 1993, vol. 17, pp. 219–28.

    Article  Google Scholar 

  35. K.J. Zeng, M. Hamalainen, and R. Luoma: Z. Metallkd., 1993, vol. 84, pp. 23–28.

    CAS  Google Scholar 

  36. J.C. Boettger and S.B. Trickey: Phys. Rev. B, 1996, vol. 53, pp. 3007–12.

    Article  CAS  Google Scholar 

  37. W. Witt: Z. Naturforsch. A, 1967, vol. 22, pp. 92–95.

    CAS  Google Scholar 

  38. B.T. Bernstein and J.F. Smith: Acta Crystallogr., 1959, vol. 12, pp. 419–20.

    Article  CAS  Google Scholar 

  39. M. Notin, J. Mejbar, A. Bouhajib, J. Charles, and J. Hertz: J. Alloys Compounds, 1995, vol. 220, pp. 62–75.

    Article  CAS  Google Scholar 

  40. E. Veleckis: J. Less-Common Met., 1981, vol. 80, pp. 241–55.

    Article  CAS  Google Scholar 

  41. M. Notin and J. Hertz: CALPHAD, 1982, vol. 6, pp. 49–56.

    Article  CAS  Google Scholar 

  42. Y. Zhong, C. Wolverton, Y.A. Chang, and Z.-K. Liu: Acta Mater., 2004, vol. 52, pp. 2739–54.

    Article  CAS  Google Scholar 

  43. K. Matsuyama: Sci. Rep. Tohoku Univ., 1928, vol. 17, pp. 783–89.

    CAS  Google Scholar 

  44. L. Donski: Z. Anorg. Chem., 1908, vol. 57, pp. 201–05.

    Article  Google Scholar 

  45. G. Bozza and C. Sonnino: Giorn. Chim. Ind. Appl., 1928, vol. 10, pp. 443–49.

    Google Scholar 

  46. M. Notin, J.C. Gachon, and J. Hertz: J. Less-Common Met., 1982, vol. 85, pp. 205–12.

    Article  CAS  Google Scholar 

  47. M. Notin, J.C. Gachon, and J. Hertz: J. Chem. Thermodyn., 1982, vol. 14, pp. 425–34.

    Article  CAS  Google Scholar 

  48. F. Sommer, J.J. Lee, and B. Predel: Z. Metallkd., 1983, vol. 74, pp. 100–04.

    CAS  Google Scholar 

  49. K.T. Jacob, S. Srikanth, and Y. Waseda: Trans. Jpn. Inst. Met., 1988, vol. 29, pp. 50–59.

    CAS  Google Scholar 

  50. E. Schurmann, C.P. Funders, and H. Litterscheidt: Arch. Eisenhuttenwes., 1975, vol. 46, pp. 473–76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozturk, K., Zhong, Y., Chen, LQ. et al. Linking first-principles energetics to CALPHAD: An application to thermodynamic modeling of the Al-Ca binary system. Metall Mater Trans A 36, 5–13 (2005). https://doi.org/10.1007/s11661-005-0133-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0133-0

Keywords

Navigation