Skip to main content
Log in

Crack initiation and propagation in 50.9 at. pct Ni-Ti pseudoelastic shape-memory wires in bending-rotation fatigue

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The structural fatigue of pseudoelastic Ni-Ti wires (50.9 at. pct Ni) was investigated using bending-rotation fatigue (BRF) tests, where a bent and otherwise unconstrained wire was forced to rotate at different rotational speeds. The number of cycles to failure (N f ) was measured for different bending radii and wire thicknesses (1.0, 1.2, and 1.4 mm). The wires consisted of an alloy with a 50-nm grain size, no precipitates, and some TiC inclusions. In BRF tests, the surface of the wire is subjected to tension-compression cycles, and fatigue lives can be related to the maximum tension and compression strain amplitudes (ɛ a ) in the wire surface. The resulting ɛ a -N f curves can be subdivided into three regimes. At ɛ a > 1 pct rupture occurs early (low N f ) and the fatigue-rupture characteristics were strongly dependent on ɛ a and the rotational speed (regime 1). For 0.75 pct < ɛ a < 1 pct, fatigue lives strongly increase and are characterized by a significant statistical scatter (regime 2). For ɛ a < 0.75 pct, no fatigue rupture occurs up to cycle numbers of 106 (regime 3). Using scanning electron microscopy (SEM), it was shown that surface cracks formed in regions with local stress raisers (such as inclusions and/or scratches). The growth of surface cracks during fatigue loading produced striations on the rupture surface; during final rupture, ductile voids form. The microstructural details of fatigue-damage accumulation during BRF testing are described and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Otsuka and C.M. Wayman: in Shape Memory Materials, K. Otsuka and C.M. Wayman, eds., Cambridge University Press, Cambridge, United Kingdom, 1998, pp. 1–26.

    Google Scholar 

  2. L. Delaey: in Phase Transformations in Materials, Materials Science and Technology-Comprehensive Treatment-Volume 5, R.W. Cahn, P. Haasen, and E.J. Kramer, eds., VCH, Weinheim, 1991, pp. 339–404.

    Google Scholar 

  3. E. Hornbogen: in Advanced Structural and Functional Materials, W.G.J. Bunk, ed., Springer-Verlag, Heidelberg, 1991, pp. 133–63.

    Google Scholar 

  4. J. Van Humbeeck: Mater. Sci. Eng., 1999, vols. A273–A275, p. 134.

    Google Scholar 

  5. T. Duerig, A. Pelton, and D. Stöckel: Mater. Sci. Eng., 1999, vols. A273–A275, p. 149.

    Google Scholar 

  6. K. Otsuka and T. Kakeshita: MRS Bull., 2002, vol. 27, pp. 91–98.

    Google Scholar 

  7. S. Suresh: Fatigue in Materials, Cambridge University Press, Cambridge, United Kingdom, 1991.

    Google Scholar 

  8. H. Christ: Wechselverformung von Metallen, Springer-Verlag, Berlin, 1991.

    Google Scholar 

  9. K.N. Melton and O. Mercier: Acta Metall., 1979, vol. 27, pp. 137–44.

    Article  CAS  Google Scholar 

  10. S. Miyazaki: Zairyo, 1990, vol. 39, pp. 1329–39.

    CAS  Google Scholar 

  11. Y.S. Kim and S. Miyazaki: SMST-97, Proc. Int. Conf. on Shape Memory and Superelastic Technologies, A. Pelton, D. Hodgson, R. Russel, and T. Duerig, eds., SMST, Pacific Grove, USA, 1997.

    Google Scholar 

  12. S. Miyazaki, K. Mizukoshi, T. Ueki, T. Sakuma, and Y. Liu: Mater. Sci. Eng., 1999, vols. A273—A275, pp. 658–63.

    Google Scholar 

  13. H. Tobushi, T. Nakahara, Y. Shimeno, and T. Hashimoto: Trans. ASME, 2000, vol. 122, pp. 186–91.

    Article  CAS  Google Scholar 

  14. M. Reinoehl, D. Bradley, R. Bouthot, and J. Proft: SMST-2000, Proc. Int. Conf. on Shape Memory and Superelastic Technologies, S.M. Russel and A.R. Pelton, eds., SMST, Fremont, USA, 2001.

    Google Scholar 

  15. A. Heckmann and E. Hornbogen: SMST-SMM 2001, Proc. Int. Conf. on Shape Memory and Superelastic Technologies and Shape Memory Materials, Y.Y. Chu and L.C. Zhao, eds., Kunming, China, 2001.

  16. E. Hornbogen: Fatigue Fract. Eng. Mater. Struct., 2002, vol. 25, pp. 785–90.

    Article  CAS  Google Scholar 

  17. Y. Kim: Mater. Trans., 2002, vol. 43, pp. 1703–06.

    Article  CAS  Google Scholar 

  18. A. Heckmann and E. Hornbogen: Proc. ICOMAT 2002, in Press.

  19. A. Bracke, G. Eggeler, and D. Grönemeyer: Ruhr-Universität Bochum, Bochum, Germany, unpublished research, 2002.

  20. J. Khalil-Allafi, A. Dlouhy, and G. Eggeler: Acta Mater., 2002, vol. 50, pp. 4255–74.

    Article  CAS  Google Scholar 

  21. F. Kosel and B. Bundara: Mat. Sci. Forum, 2000, vols. 327–328, pp. 351–54.

    Article  Google Scholar 

  22. T.J. Lim and D.L. McDowell: Trans. ASME, 1999, vol. 121, pp. 9–18.

    CAS  Google Scholar 

  23. M. Wagner and G. Eggeler: Ruhr-Universität Bochum, Bochum, Germany, unpublished research, 2002.

  24. A. Yawny and M. Sade: Centro Atomico Bariloche, Argentina, unpublished research, 2002.

  25. Metals Handbook, 9th ed., vol. 12, Fractography, ASM INTERNATIONAL, Metals Park, OH, 1987.

  26. A.L. McKelvey and R.O. Ritchie: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 731–43.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

(on leave from the Centro Atomico Bariloche, Argentina)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawaguchi, T.A., Kausträter, G., Yawny, A. et al. Crack initiation and propagation in 50.9 at. pct Ni-Ti pseudoelastic shape-memory wires in bending-rotation fatigue. Metall Mater Trans A 34, 2847–2860 (2003). https://doi.org/10.1007/s11661-003-0186-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0186-x

Keywords

Navigation