Skip to main content
Log in

Influence of microstructure on high-cycle fatigue of Ti-6Al-4V: Bimodal vs. lamellar structures

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The high-cycle fatigue (HCF) of titanium alloy turbine engine components remains a principal cause of failures in military aircraft engines. A recent initiative sponsored by the United States Air Force has focused on the major drivers for such failures in Ti-6Al-4V, a commonly used turbine blade alloy, specifically for fan and compressor blades. However, as most of this research has been directed toward a single processing/heat-treated condition, the bimodal (solution-treated and overaged (STOA)) microstructure, there have been few studies to examine the role of microstructure. Accordingly, the present work examines how the overall resistance to high-cycle fatigue in Ti-6Al-4V compares between the bimodal microstructure and a coarser lamellar (β-annealed) microstructure. Several aspects of the HCF problem are examined. These include the question of fatigue thresholds for through-thickness large and short cracks; microstructurally small, semi-elliptical surface cracks; and cracks subjected to pure tensile (mode I) and mixed-mode (mode I+II) loading over a range of load ratios (ratio of minimum to maximum load) from 0.1 to 0.98, together with the role of prior damage due to sub-ballistic impacts (foreign-object damage (FOD)). Although differences are not large, it appears that the coarse lamellar microstructure has improved smooth-bar stress-life (S-N) properties in the HCF regime and superior resistance to fatigue-crack propagation (in pure mode I loading) in the presence of cracks that are large compared to the scale of the microstructure; however, this increased resistance to crack growth compared to the bimodal structure is eliminated at extremely high load ratios. Similarly, under mixed-mode loading, the lamellar microstructure is generally superior. In contrast, in the presence of microstructurally small cracks, there is little difference in the HCF properties of the two microstructures. Similarly, resistance to HCF failure following FOD is comparable in the two microstructures, although a higher proportion of FOD-induced microcracks are formed in the lamellar structure following high-velocity impact damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Report of the AdHoc Committee on Air Force Aircraft Jet Engine Manufacturing and Production Processes, United States Air Force Scientific Advisory Board, SAF/AQQS: the Pentagon, Washington, DC, 1992.

  2. B.A. Cowles: Int. J. Fracture, 1996, vol. 80, pp. 147–63.

    Article  CAS  Google Scholar 

  3. J.C.I. Chang: Air Force Office of Scientific Research, Bolling AFB, Washington, DC, 1996.

    Google Scholar 

  4. T. Nicholas, J.R. Barber, and R.S. Bertke: Exp. Mech., 1980, vol. 20, pp. 357–64.

    Article  Google Scholar 

  5. Fretting Fatigue, European Structural Integrity Society Publication No. 18, R.B. Waterhouse and T.C. Lindley, eds., Mechanical Engineering Publications Ltd., London, 1994.

    Google Scholar 

  6. J.J. Kruzic, J.P. Campbell, and R.O. Ritchie: Acta Mater., 1999, vol. 47, pp. 801–16.

    Article  CAS  Google Scholar 

  7. G. Lütjering: Mater. Sci. Eng., 1998, vol. A243, pp. 32–45.

    Google Scholar 

  8. A.W. Thompson: in Fatigue Behavior of Titanium Alloys, R.R. Boyer, D. Eylon, and G. Lütjering, eds., TMS, Warrendale, PA, 1999, pp. 23–30.

    Google Scholar 

  9. J.C. Williams and G. Lütjering: in Titanium ’80, Science and Technology, H. Kimura and O. Izumi, eds., TMS-AIME, Warrendale, PA, 1981, vol. 1, pp. 671–81.

    Google Scholar 

  10. J.J. Lucas: in Titanium Science and Technology, R.I. Jaffee and H.M. Burte, eds., Plenum Press, New York, NY, 1973, vol. 3, pp. 2081–95.

    Google Scholar 

  11. M. Peters, A. Gysler, and G. Lütjering: Metall. Trans. A, 1984, vol. 15A, pp. 1597–1605.

    CAS  Google Scholar 

  12. G. Lütjering, J. Albrecht, and A. Gysler: in Titanium ’92: Science and Technology, F.H. Froes and I. Caplan, eds., TMS, Warrendale, PA, 1993, pp. 1635–46.

    Google Scholar 

  13. C.W. Brown and M.A. Hicks: Fatigue Eng. Mater. Struct., 1983, vol. 6, pp. 67–76.

    Article  Google Scholar 

  14. J.A. Hines, J.O. Peters, and G. Lütjering: in Fatigue Behavior of Titanium Alloys, R.R. Boyer, D. Eylon, and G. Lütjering, eds., TMS, Warrendale, PA, 1999, pp. 15–22.

    Google Scholar 

  15. J.C. Chesnutt, A.W. Thompson, and J.C. Williams: in Titanium ’80, Science and Technology, H. Kimura and O. Izumi, eds., TMS-AIME, Warrendale, PA, 1981, vol. 2, pp. 1875–82.

    Google Scholar 

  16. G.R. Yoder, L.A. Cooley, and T.W. Crooker: Eng. Fract. Mech., 1983, vol. 17, pp. 185–88.

    Article  Google Scholar 

  17. G.R. Yoder, L.A. Cooley, and T.W. Crooker: Metall. Trans. A, 1977, vol. 8A, pp. 1737–43.

    CAS  Google Scholar 

  18. K.S. Ravichandran: Acta Mater., 1991, vol. 39, pp. 401–10.

    Article  CAS  Google Scholar 

  19. P.E. Irving and C.J. Beevers: Mater. Sci. Eng., 1974, vol. 14, pp. 229–38.

    Article  CAS  Google Scholar 

  20. G.R. Yoder, L.A. Cooley, and T.W. Crooker: Eng. Fract. Mech., 1979, vol. 11, pp. 805–16.

    Article  CAS  Google Scholar 

  21. D. Taylor: A Compendium of Fatigue Thresholds and Crack Growth Rates, EMAS Ltd., Warley, United Kingdom, 1985.

    Google Scholar 

  22. J.K. Gregory: in Handbook of Fatigue Crack Propagation in Metallic Structures, A. Carpinteri, ed., Elsevier Science B.V., Amsterdam, The Netherlands, 1994, pp. 281–21.

    Google Scholar 

  23. M.R. Bache, W.J. Evans, and M. McElhone: Mater. Sci. Eng., 1997, vols. A234–A236, pp. 918–22.

    Google Scholar 

  24. J.P. Thomas: Scripta Mater., 1998, vol. 39, pp. 1647–52.

    Article  CAS  Google Scholar 

  25. J.W. Sheldon, K.R. Bain, and J.K. Donald: Int. J. Fatigue, 1999, vol. 21, pp. 733–41.

    Article  CAS  Google Scholar 

  26. Y.N. Lenets and R.S. Bellows: Int. J. Fatigue, 2000, vol. 22, pp. 521–29.

    Article  CAS  Google Scholar 

  27. R.O. Ritchie: in Proc. ASME Aerospace Division, J.C.I. Chang, J. Coulter, D. Brei, D. Martinez, W. Hg, and P.P. Freidmann, eds., ASME, New York, NY, 1996, AMD vol. 52, pp. 321–33.

    Google Scholar 

  28. D. Eylon: Summary of Available Information on the Processing of the Ti-6Al-4V HCF/LCF Program Plates, University of Dayton Report, Dayton, OH, 1998.

    Google Scholar 

  29. J.C. Chesnutt, A.W. Thompson, and J.C. Williams: Technical Report No. AFML-TR-78-68, Air Force Materials Laboratory, Wright-Patterson Air Force Base, OH, 1978.

    Google Scholar 

  30. R.O. Ritchie, D.L. Davidson, B.L. Boyce, J.P. Campbell, and O. Roder: Fat. Fract. Eng. Mater. Struct., 1999, vol. 22, pp. 621–31.

    Article  CAS  Google Scholar 

  31. B.L. Boyce and R.O. Ritchie: Eng. Fract. Mech., 2001, vol. 68, pp. 129–47.

    Article  Google Scholar 

  32. H. Döker, V. Bachmann, and G. Marci: in Fatigue Thresholds, J. Backlund, A.F. Blom and C.J. Beevers, eds., EMAS, Warley, United Kingdom, 1982, vol. 1, pp. 45–58.

    Google Scholar 

  33. W.A. Herman, R.W. Hertzberg, and R. Jaccard: Fatigue Fract. Eng. Mater. Struct., 1988, vol. 11, pp. 303–20.

    Article  Google Scholar 

  34. H.R. Mayer and S.E. Stanzl-Tschegg: BOKU, Vienna, Austria, unpublished research, 1998.

  35. R.O. Ritchie and W. Yu: in Small Fatigue Cracks, R.O. Ritchie and J. Lankford, eds., TMS-AIME, Warrendale, PA, 1986, pp. 167–89.

    Google Scholar 

  36. P. Lukáš: Eng. Fract. Mech., 1987, vol. 26, pp. 471–73.

    Article  Google Scholar 

  37. J.C. Newmann and I.S. Raju: Eng. Fract. Mech., 1981, vol. 15, pp. 185–92.

    Article  Google Scholar 

  38. K.S. Ravichandran: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 149–56.

    Article  CAS  Google Scholar 

  39. K.S. Ravichandran and J.M. Larsen: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 157–69.

    Article  CAS  Google Scholar 

  40. J.O. Peters, O. Roder, B.L. Boyce, A.W. Thompson, and R.O. Ritchie: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1571–83.

    Article  CAS  Google Scholar 

  41. B.L. Boyce: Ph.D. Thesis, R.O. Ritchie, advisor, University of California, Berkeley, CA, Dec. 2001.

    Google Scholar 

  42. M.Y. He and J.W. Hutchinson: J. Appl. Mech., 2000, vol. 67, pp. 207–09.

    Article  Google Scholar 

  43. J.P. Campbell and R.O. Ritchie: Eng. Fract. Mech., 2000, vol. 67, pp. 209–27.

    Article  Google Scholar 

  44. J.P. Campbell and R.O. Ritchie: Eng. Fract. Mech., 2000, vol. 67, pp. 229–49.

    Article  Google Scholar 

  45. J.P. Campbell and R.O. Ritchie: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 497–503.

    Article  CAS  Google Scholar 

  46. M.Y. He and J.W. Hutchinson: Eng. Fract. Mech., 2000, vol. 65, pp. 1–14.

    Article  Google Scholar 

  47. J.O. Peters and R.O. Ritchie: Eng. Fract. Mech., 2000, vol. 67, pp. 193–207.

    Article  Google Scholar 

  48. J.O. Peters and R.O. Ritchie: Int. J. Fatigue, 2001, in press.

  49. B.L. Boyce, X. Chen, J.W. Hutchinson, and R.O. Ritchie: Mech. Mater., 2001, vol. 33, pp. 441–54.

    Article  Google Scholar 

  50. D.L. Davidson and D. Eylon: Metall. Trans. A, 1980, vol. 11A, pp. 837–43.

    CAS  Google Scholar 

  51. M.R. Bache, W.J. Evans, and H.M. Davies: J. Mater. Sci., 1997, vol. 32, pp. 3435–42.

    Article  CAS  Google Scholar 

  52. Y. Murakami, T. Nomoto, and T. Ueda: Fatigue Fract. Eng. Mater. Struct., 1999, vol. 22, pp. 581–90.

    Article  CAS  Google Scholar 

  53. L. Wagner and G. Lütjering: Proc. 2nd Int. Conf. Shot Peening, H.O. Fuchs, ed., American Shot Peening Society, Paramus, NJ, 1984, pp. 194–200.

    Google Scholar 

  54. S. Adachi, L. Wagner, and G. Lütjering: Titanium Science and Technology. Proc. 5th Int. Conf. on Titanium, G. Lütjering, V. Zwicker, and W. Bunk, eds., DGM, Oberursel, Germany, 1985, p. 2139.

    Google Scholar 

  55. W.J. Evans and M.R. Bache: Int. J. Fatigue, 1994, vol. 16, pp. 443–52.

    Article  CAS  Google Scholar 

  56. G. Marci: in Fatigue ’96, Proc. 6th Int. Congr. on Fatigue, G. Lütjering and H. Nowack, eds., Pergamon Press, Oxford, United Kingdom, 1996, vol. I, p. 493.

    Google Scholar 

  57. R.J.H. Wanhill: Corrosion-NACE, 1974, vol. 30, pp. 28–35.

    CAS  Google Scholar 

  58. D.B. Dawson and R.M.N. Pelloux, Metall. Trans, 1974, vol. 5, pp. 723–31.

    CAS  Google Scholar 

  59. M.D. Halliday and C.J. Beevers: J. Testing Eval., 1981, vol. 9, pp. 195–201.

    Article  CAS  Google Scholar 

  60. K.S. Ravichandran: Scripta Metall. Mater., 1990, vol. 24, pp. 1559–63.

    Article  CAS  Google Scholar 

  61. T. Ogawa, K. Tokaji, and K. Ohya: Fatigue Fract. Eng. Mater. Struct., 1993, vol. 16, pp. 973–82.

    Article  CAS  Google Scholar 

  62. V. Sinha, C. Mercer, and W.O. Soboyejo: Mater. Sci. Eng., 2000, vol. A287, pp. 30–42.

    CAS  Google Scholar 

  63. S. Suresh and R.O. Ritchie: Int. Met. Rev., 1984, vol. 29, pp. 445–76.

    Google Scholar 

  64. M.A. Pustejovsky: Eng. Fract. Mech., 1979, vol. 11(1), pp. 9–15.

    Article  CAS  Google Scholar 

  65. M.A. Pustejovsky: Eng. Fract. Mech., 1979, vol. 11(1), pp. 17–31.

    Article  CAS  Google Scholar 

  66. H. Gao, M.W. Brown, and K.J. Miller: Fat. Eng. Mater. Struct., 1982, vol. 5, pp. 1–17.

    Article  Google Scholar 

  67. J. Tong, J.R. Yates, and M.W. Brown: Fat. Eng. Mater. Struct., 1994, vol. 17, pp. 829–38.

    Article  CAS  Google Scholar 

  68. H. Nayeb-Hashemi, F.A. McClintock, and R.O. Ritchie: Metall. Trans. A, 1982, vol. 13A, pp. 2197–204.

    Google Scholar 

  69. M.C. Smith and R.A. Smith: in Basic Question in Fatigue: vol. 1, ASTM STP 924, J.T. Fong and R.J. Fields, eds., ASTM, Philadelphia, PA, 1988, pp. 260–80.

    Google Scholar 

  70. E.K. Tschegg: Acta Metall., 1983, vol. 31, pp. 1323–30.

    Article  Google Scholar 

  71. J.O. Peters, B.L. Boyce, X. Chen, J.M. McNaney, J.W. Hutchinson, and R.O. Ritchie: Proc. Int. Conf. Fatigue in the Very High Cycle Regime, S. Stanzl-Tschegg and H. Mayer, eds., BOKU, Vienna, Austria, 2001, pp. 129–40.

    Google Scholar 

  72. H. Kitagawa and S. Takahashi: Proc. 2nd Intl. Conf. on Mechanical Behavior of Materials, ASM, Metals Park, OH, 1976, pp. 627–31.

    Google Scholar 

  73. M.H. El Haddad, T.H. Topper, and K.N. Smith: Eng. Fract. Mech., 1979, vol. 11, pp. 573–84.

    Article  Google Scholar 

  74. R.O. Ritchie and J. Lankford: Mater. Sci. Eng., 1986, vol. 84, pp. 11–16.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the symposium entitled “Defect Properties and Mechanical Behavior of HCP Metals and Alloys” at the TMS Annual Meeting, February 11–15, 2001, in New Orleans, Louisiana, under the auspices of the following ASM committees: Materials Science Critical Technology Sector, Structural Materials Division, Electronic, Magnetic & Photonic Materials Division, Chemistry & Physics of Materials Committee, Joint Nuclear Materials Committee, and Titanium Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nalla, R.K., Ritchie, R.O., Boyce, B.L. et al. Influence of microstructure on high-cycle fatigue of Ti-6Al-4V: Bimodal vs. lamellar structures. Metall Mater Trans A 33, 899–918 (2002). https://doi.org/10.1007/s11661-002-0160-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0160-z

Keywords

Navigation