Skip to main content
Log in

Near-nanostructured WC-18 pct Co coatings with low amounts of non-WC carbide phase: Part I. Synthesis and characterization

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Near-nanostructured WC-18 pct Co coatings, with low amounts of non-WC carbide phases, have been synthesized using high velocity oxygen fuel (HVOF) thermal spraying under spraying conditions of varying fuel chemistry, fuel-oxygen ratio, and powder particle size. The results show that the temperature the particles experience during spraying depends on the preceding parameters. Compared to available published results on WC-Co system coatings, nanostructured WC-18 pct Co coatings, synthesized in these experiments, contain very low amounts of non-WC carbide phase (less than 10 pct vol). This is comparable to that of the conventional WC-12 pct Co coating, prepared in the present study for comparison purposes. Regardless of whether the binder phase in the agglomerated feedstock powder particles melt or not, the WC particles do not appear to experience significant growth as a result of the spraying. The size of WC particles remains in the 200 to 500 nm range, consistent with that present in the feedstock powder. The as-received near-nanostructured WC-18 pct Co feedstock powder exhibits morphological characteristics that lead to low amounts of non-WC carbide phases in the coatings. The microstructure and phase constitution of the coatings depend on particle size of the feedstock powder and flame characteristics of the fuels during spraying. A higher particle temperature causes more decomposition of the WC phase but reduces porosity in the coatings, this occurs with higher flame temperature and smaller particle sizes. Propylene fuel produces less decomposition of the WC phase despite the higher flame temperature and, thus, provides the best combination of dense coating with low amount of non-WC phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Rangaswamy and H. Herman: Advances in Thermal Spraying, Pergamon Press, Elmsford, NY, 1986, pp. 101–10.

    Google Scholar 

  2. D. Tu, S. Chang, C. Chao, and C. Lin: J. Vac. Sci. Technol., 1985, vol. A3, pp. 2479–82.

    Google Scholar 

  3. L. Moskowitz and K. Trelewicz: J. Thermal Spray Technol., 1997, vol. 6, pp. 294–99.

    CAS  Google Scholar 

  4. D.J. Nolan and M. Samandi: J. Thermal Spray Technol., 1997, vol. 6, pp. 422–24.

    CAS  Google Scholar 

  5. H.L. de Villiers Lovelock, P.W. Richer, J.M. Benson, and P.M. Young: J. Thermal Spray Technol., 1998, vol. 7, pp. 97–107.

    Article  Google Scholar 

  6. C.J. Li, A. Ohmori, and Y. Harada: J. Mater. Sci., 1996, vol. 31, pp. 785–94.

    Article  CAS  Google Scholar 

  7. J. Subrahmanyam, M.P. Srivastava, and R. Sivakumar: Mater. Sci. Eng., 1986, vol. 84, pp. 209–14.

    Article  CAS  Google Scholar 

  8. J.E. Nerz, B.A. Kushner, and A.J. Rotolico: J. Thermal Spray Technol., 1992, vol. 1, pp. 147–52.

    CAS  Google Scholar 

  9. A. Karimi, C. Verdon, and G. Barbezat: Surf. Coating Technol., 1993, vol. 57, pp. 81–89.

    Article  CAS  Google Scholar 

  10. C.J. Li, A. Ohmori, and Y. Harada: J. Thermal Spray Technol., 1996, vol. 5, pp. 69–73.

    CAS  Google Scholar 

  11. W.J. Jarosinski, M.F. Gruninger, and C.H. Londry: in Thermal Spray Coatings: Research, Design and Applications, C.C. Berndt and T.F. Bernecki, eds., ASM INTERNATIONAL, Materials Park, OH, 1993, pp. 153–57.

    Google Scholar 

  12. K. Niemi, P. Vuoristo, T. Mantyla, G. Barbezat, and A.R. Nicoll: in Thermal Spray: International Advances in Coatings Technology, C.C. Berndt, ed., ASM INTERNATIONAL, Materials Park, OH, 1992, pp. 655–89.

    Google Scholar 

  13. H.L. de Villiers Lovelock: Thermal Spray Technol., 1998, vol. 7, pp. 357–73.

    Article  Google Scholar 

  14. V. Ramnath and N. Jayaraman: Mater. Sci. Technol., 1989, vol. 5, pp. 382–88.

    CAS  Google Scholar 

  15. H.J. Kim, Y.G. Kweon, and R.W. Chang: J. Thermal Spray Technol., 1994, vol. 3, pp. 169–78.

    CAS  Google Scholar 

  16. D.J. Varacalle, Jr., E. Acosta, J. Figert, M. Syma, J. Worthington, and D. Carrillo: in Thermal Spray: Practical Solutions for Engineering Problems, C.C. Berndt, ed., ASM INTERNATIONAL, Materials Park, OH, 1996, pp. 699–707.

    Google Scholar 

  17. J.E. Nerz, B.A. Kushner, and A.J. Rotolico: in Protective Coatings: Processing and Characterization, R.M. Yazici, ed., TMS, Warrendale, PA, 1990, pp. 133–43.

    Google Scholar 

  18. S.Y. Hwang, B.G. Seong, and M.C. Kim: in Thermal Spray: Practical Solutions for Engineering Problems, C.C. Bemdt, ed., ASM INTERNATIONAL, Materials Park, OH, 1996, pp. 107–12.

    Google Scholar 

  19. S.F. Wayne and S. Sampath: J. Thermal Spray Technol., 1992, vol. 1, pp. 307–15.

    CAS  Google Scholar 

  20. J. Nutting, J.M. Guilemay, and Z. Dong: Mater. Sci. Technol., 1995, vol. 11, pp. 961–66.

    CAS  Google Scholar 

  21. J. He, M. Ice, S. Dallek, and E.J. Lavernia: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 541–53.

    CAS  Google Scholar 

  22. T.A. Mantyla, K.J. Niemi, P.M.J. Vuoristo, G. Barbezat, and A.R. Nicoll: Proc. 2nd Plasma-Technik Symp., S. Blum-Sandmeier, H. Eschnauer, P. Huber, and A. Nicoll, eds., Sulzer Metco AG, Wohlen, Switzerland, 1991, vol. 1, pp. 287–97.

    Google Scholar 

  23. G. Barbezat, A.R. Nicoll, and A. Sickinger: Wear, 1993, vols. 162–164, pp. 529–37.

    Article  Google Scholar 

  24. T.P. Slavin and J. Nerz: in Thermal Spray Research and Applications, T.F. Bernecki, ed., ASM INTERNATIONAL, Materials Park, OH, 1991, pp. 159–65.

    Google Scholar 

  25. S. Usmani, S. Sampath, and H. Herman: in Thermal Spray Processing of Nanoscale Materials—A Conference Report with Extended Abstracts, C.C. Berndt and E.J. Lavernia, eds., J. Thermal Spray Technol., 1998, vol. 7, pp. 429–31.

    Google Scholar 

  26. D.A. Stewart, P.H. Shipway, and D.G. McCartney: Wear, 1999, vols. 225–229, pp. 789–98.

    Article  Google Scholar 

  27. P. Vuoristo, K. Niemi, A. Makela, and T. Mantyla: in Thermal Spray: Research, Design and Applications, C.C. Berndt and T.F. Bemecki, eds., ASM INTERNATIONAL, Materials Park, OH, 1993, pp. 173–78.

    Google Scholar 

  28. S.F. Wayne and S. Sampath: J. Thermal Spray Technol., 1992, vol. 1, pp. 307–15.

    CAS  Google Scholar 

  29. P.R. Strutt: in Thermal Spray Processing of Nanoscale Materials—A Conference Report with Extended Abstracts, C.C. Berndt and E.J. Lavernia, eds., J. Thermal Spray Technol., 1998, vol. 7, pp. 413–15.

    Google Scholar 

  30. B.K. Kear and L.E. McCandlish: Nanostr. Mater., 1993, vol. 3, pp. 19–30.

    Article  CAS  Google Scholar 

  31. Y. Qiao, Y. Liu, and T.E. Fischer: Department of Materials Science and Engineering, Stevens Institute of Technology, Hoboken, NJ, unpublished research.

  32. T. Ueda, M. Sato, and T. Sugita: J. Jpn. Soc. Precision Eng., 1995, vol. 61, pp. 1448–52.

    Google Scholar 

  33. U.A. Tamburini, G. Campari, G. Spinolo, and P. Lupotto: Rev. Sci. Instrum., 1995, vol. 66, pp. 5006–14.

    Article  Google Scholar 

  34. Spraytime, 2000, first quarter, pp. 6–7.

  35. D.J. Varacalle, G.R. Smolik, G.C. Wilson, G. Trons, and A. Walter: in Protective Coatings: Processing and Characterization, R.M. Yazici, ed., TMS, Warrendale, PA, 1990, pp. 121–34.

    Google Scholar 

  36. L.M. Berger: in Thermal Spray: International Advances in Coatings Technology, C.C. Berndt, ed., ASM INTERNATIONAL, Materials Park, OH, 1992, pp. 253–58.

    Google Scholar 

  37. G.V. Bobrov, V.B. Shekhov, G.M. Bluykher, and T.E. Fomina: Proc. Conf. Pluch. Pokrytii Vysokotemp. Raspylenium, L.K. Druzhinin, ed., Atomizdat, Moscow, 1973, pp. 245–55.

    Google Scholar 

  38. S. Rangasywamy and H. Herman: Advances in Thermal Spraying, Pergamon Press, Elmsford, NY, 1986, pp. 101–10.

    Google Scholar 

  39. H. Kreye, D. Fandrich, H.H. Muller, and G. Reiners: Advances in Thermal Spraying, Pergamon Press, Elmsford, NY, 1986, pp. 121–28.

    Google Scholar 

  40. C. Li, A. Ohmori, and Y. Harada: in Thermal Spraying Current Status and Future Trends, A. Ohmori, ed., High Temperature Society of Japan, Osaka, Japan, 1995, pp. 333–39.

    Google Scholar 

  41. H. Maruo, Y. Hirata, and Y. Matsumoto: in Thermal Spraying Current Status and Future Trends, A. Ohmori, ed. High Temperature Society of Japan, Osaka, Japan, 1995, pp. 341–46.

    Google Scholar 

  42. M. Fukumoto, S. Katoh, and I. Okane: in Thermal Spraying Current Status and Future Trends, A. Ohmori, ed., High Temperature Society of Japan, Osaka, Japan, 1995, pp. 353–58.

    Google Scholar 

  43. O.P. Solonenko, A. Ohmori, S. Matsuno, and A.V. Smirnov: in Thermal Spraying Current Status and Future Trends, A. Ohmori, ed., High Temperature Society of Japan, Osaka, Japan, 1995, pp. 359–64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, J., Lavernia, E.J., Liu, Y. et al. Near-nanostructured WC-18 pct Co coatings with low amounts of non-WC carbide phase: Part I. Synthesis and characterization. Metall Mater Trans A 33, 145–157 (2002). https://doi.org/10.1007/s11661-002-0013-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0013-9

Keywords

Navigation