Skip to main content
Log in

Efficient plant regeneration of native spearmint (Mentha spicata L.)

  • Developmental Biology/Morphogenesis
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Protocols and media constituents for efficient in vitro plant regeneration of Native Spearmint (Mentha spicata L. cultivar ‘Native Spearmint’) have been defined. Adventitious shoots were initiated either directly from morphogenetically competent cells of explants or primary callus. Leaf explants from at least 2-mo.-old in vitro-maintained shoots exhibited the greatest morphogenetic capacity. Explants derived from basal portions of leaves at the bottom of the shoot were most responsive, with up to a 100% regeneration frequency and greater than nine shoots per explant. Highest frequency of meristemoids and morphogenetic callus were initiated from explants cultured onto a basal medium containing Murashige and Skoog (MS) salts, supplemented with 4 mg thidiazuron (TDZ) per L and 25% (vol/vol) coconut water (CW) for 10 to 14 d in darkness. Bud and shoot development required removal of both TDZ and CW from the medium. Shoot propagules were transferred to basal medium supplemented with 0.01 mg α-naphthaleneacetic acid (NAA) per L and grown under low light for about 2 wk to facilitate shoot elongation. Individual shoots about 1 cm tall were dissected and retransferred onto the same medium. Root initiation began within 4 to 6 d and a functional root system developed within 2 to 3 wk. These plantlets were transferred to soil and acclimated successfully for growth and development in a greenhouse. This is the first report of an efficient regeneration system for Native Spearmint based on adventitious organogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bent, A. Plant disease resistance genes: function meets structure. Plant Cell 8:1757–1771; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Bircout, J.; Garcia-Rodriduze, M. J.; Poupardin, C.; Saussay, R. Biosynthèse de Composés monoterpéniques par les tissus de quelques espèces de Menthes cultivées in vitro. C. R. Acad. Sci. 287:611–613; 1978.

    Google Scholar 

  • Cao, H.; Li, X.; Dong, X.-N. Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc. Natl. Acad. Sci. USA 95:6531–6536; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Constabel, F. Medicinal plant biotechnology. Plant Med. 56:421–425; 1990.

    Article  CAS  Google Scholar 

  • Croteau, R.; Karp, F.; Wagschal, K. C.; Satterwhite, D. M.; Hyatt, D.; Skotland, C. B. Biochemical characterization of a spearmint mutant that resembles peppermint in monoterpine content. Plant Physiol. 96:744–752; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Croteau, R.; Gershenzon, J. Genetic control of monoterpene biosynthesis in mints (Mentha: Lamiaceae). Genetic engineering of plant secondary metabolism. New York: Plenum Press; 1994:193–229.

    Google Scholar 

  • Goddijn, O. J. M.; Pen, J. Plants as bioreactors. Tibtech September 13:379–387; 1995.

    CAS  Google Scholar 

  • Huetteman, C. A.; Preece, J. E. Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tissue Organ Cult. 33:105–119; 1993.

    Article  CAS  Google Scholar 

  • Krasnyanski, S.; Ball, T. M.; Sink, K. C. Somatic hybridization in mint: identification and characterization of Mentha piperita (+) M. spicata hybrid plants. Theor. Appl. Genet. 96:683–687; 1998.

    Article  Google Scholar 

  • Lacy, M. L.; Stephens, C. T.; Green, R. J.; York, A. C. Mint production: in the midwestern United States. North Central Res. Ext. Pub. 155; 1981.

  • Larkin, P. J.; Scowcroft, W. R. Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet. 60:197–214; 1981.

    Article  Google Scholar 

  • Liu, D.; Raghothama, K. G.; Hasegawa, P. M.; Bressan, R. A. Osmotin over-expression in potato delays development of disease symptoms. Proc. Natl. Acad. Sci. USA 91:1888–1892; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Malik, K. A.; Saxena, P. K. Regeneration in Phaseolus vulgaris: high-frequency induction of direct shoot formation in intact seedlings by N6-benzylaminopurine and thidiazuron. Planta 186:384–389; 1992.

    Article  CAS  Google Scholar 

  • Martin, G. B.; Brommonschenkel, S. H.; Chungwongse, J., et al. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science (Wash DC) 262:1432–1436; 1993.

    Article  CAS  Google Scholar 

  • Murashige, T.; Skoog, F. A. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Murthy, B. N. S.; Murch, S. J.; Saxena, P. K. Thidiazuron: a potent regulator of in vitro plant morphogenesis. In Vitro Cell. Dev. Biol. Plant 34:267–275; 1998.

    CAS  Google Scholar 

  • Niu, X.; Lin, K.; Hasegawa, P. M.; Bressan, R. A.; Weller, S. C. Transgenic peppermint (Mentha × piperita L.) plants obtained by co-cultivation with Agrobacterium tumefaciens. Plant Cell Rep. 17:165–171; 1998.

    Article  CAS  Google Scholar 

  • Perlak, F. J.; Stone, T. B.; Muskoff, Y. M., et al. Genetically improved potatoes: protection from damage by Colorado potato beetles. Plant Mol. Biol. 22:313–321; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Ryals, J. A.; Neuenschwander, U. H.; Willits, M. G., et al. Systemic acquired resistance. Plant Cell 8:1809–1819; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Skoog, F.; Miller, C. O. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol. 11:118–130; 1957.

    Google Scholar 

  • Sreenivasu, K.; Malik, S. K.; Kumar, P. A.; Sharma, P. R. Plant regeneration via somatic embryogenesis in pigeonpea (Cajanus cajan L. Millsp). Plant Cell Rep. 17:294–297; 1998.

    Article  CAS  Google Scholar 

  • Thorpe, T. A.; Vasil, I. K. Morphogenesis and regeneration. In: Vasil, I. K., ed. Plant cell and tissue culture. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1994:17–36.

    Google Scholar 

  • Töpfer, R.; Gronenborn, B.; Scafer, S.; Schell, J.; Steinbiss, H. H. Expression of engineered wheat dwarf virus in seed-derived embryos. Physiol. Plant. 79:158–162; 1990.

    Article  Google Scholar 

  • Van Eck, J. M.; Kitto, S. L. Callus initiation and regeneration in Mentha. HortScience 25:804–806; 1990.

    Google Scholar 

  • Vasil, I. K.; Vasil, V. In vitro culture of cereals and grasses. In: Vasil, I. K.; Thorpe, T. A., ed. Plant cell and tissue culture. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1994:293–312.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Niu, X., Bressan, R.A. et al. Efficient plant regeneration of native spearmint (Mentha spicata L.). In Vitro Cell.Dev.Biol.-Plant 35, 333–338 (1999). https://doi.org/10.1007/s11627-999-0044-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-999-0044-7

Key words

Navigation