Skip to main content
Log in

The role of polyamines during in vivo and in vitro development

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Polyamines are ubiquitous polycationic compounds that mediate fundamental aspects of cell growth, differentiation, and cell death in eukaryotic and prokaryotic organisms. In plants, polyamines are implicated in a variety of growth and developmental processes, in addition to abiotic and biotic stress responses. In the last decade, mutant studies conducted predominantly in Arabidopsis thaliana revealed an obligatory requirement for polyamines in zygotic and somatic embryogenesis. Moreover, our appreciation for the intricate spatial and temporal regulation of intracellular polyamine levels has advanced considerably. The exact molecular mechanism(s) through which polyamines exert their physiological response remains somewhat enigmatic and likely serves as a major area for future research efforts. In the following review, we discuss recent advances in the plant polyamine field, which range from metabolism and mutant characterization to molecular genetics and potential mode(s) of polyamine action during growth and development in vitro and in vivo. This review will also focus on the specific role of polyamines during embryogenesis and organogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.

Similar content being viewed by others

References

  • Acosta, C.; Pérez-Amador, M. A.; Carbonell, J.; Granell, A. The two ways to produce putrescine in tomato are cell-specific during normal development. Plant Sci. 168: 1053–1057; 2005 doi:10.1016/j.plantsci.2004.12.006.

    CAS  Google Scholar 

  • Alcázar, R.; Cuevas, J. C.; Patron, M.; Altabella, T.; Tiburcio, A. F. Abscisic acid modulates polyamine metabolism under water stress in Arabidopsis thaliana. Physiol. Plant 128: 448–455; 2006b doi:10.1111/j.1399-3054.2006.00780.x.

    Google Scholar 

  • Alcázar, R.; Garcia-Martinez, J. L.; Cuevas, J. C.; Tiburcio, A. F.; Altabella, T. Overexpression of ADC2 in Arabidopsis induces dwarfism and late-flowering through GA-deficiency. Plant J. 43: 425–436; 2005 doi:10.1111/j.1365-313X.2005.02465.x.

    PubMed  Google Scholar 

  • Alcázar, R.; Marco, F.; Cuevas, J. C.; Patron, M.; Ferrando, A.; Carrasco, P.; Tiburcio, A. F.; Altabella, T. Involvement of polyamines in plant response to abiotic stress. Biotechnol. Lett. 28: 1867–1876; 2006a doi:10.1007/s10529-006-9179-3.

    PubMed  Google Scholar 

  • Altamura, M. M.; Capitani, F.; Falasca, G.; Gallelli, A.; Scaramagli, S.; Bagni, N. De novo root-formation in tobacco thin-layers is affected by inhibition of polyamine biosynthesis. J. Exp. Bot. 42: 1575–1582; 1991 doi:10.1093/jxb/42.12.1575.

    CAS  Google Scholar 

  • Altamura, M. M.; Capitani, F.; Falasca, G.; Gallelli, A.; Scaramagli, S.; Bueno, M.; Torrigiani, P.; Bagni, N. Morphogenesis in cultured thin-layers and pith explants of tobacco.1. effect of putrescine on cell-size, xylogenesis and meristemoid organization. J. Plant Physiol. 147: 101–106; 1995.

    CAS  Google Scholar 

  • An, Z.; Jing, W.; Liu, Y.; Zhang, W. Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid-induced stomatal closure in Vicia faba. J. Exp. Bot. 59: 815–825; 2008 doi:10.1093/jxb/erm370.

    PubMed  CAS  Google Scholar 

  • Antognoni, F.; Fornale, S.; Grimmer, C.; Komor, E.; Bagni, N. Long-distance translocation of polyamines in phloem and xylem of Ricinus communis L. plants. Planta 204: 520–527; 1998 doi:10.1007/s004250050287.

    CAS  Google Scholar 

  • Aouida, M.; Leduc, A.; Poulin, R.; Ramator, D. AGP2 Encodes the major permease for high affinity polyamine import in Saccharomyces cerevisiae. J. Biol. Chem. 280: 24267–24276; 2005 doi:10.1074/jbc.M503071200.

    PubMed  CAS  Google Scholar 

  • Applewhite, P. B.; Kaur-Sawhney, R.; Galston, A. W. A role for spermidine in the bolting and flowering of Arabidopsis. Physiol. Plant. 108: 314–320; 2000 doi:10.1034/j.1399-3054.2000.108003314.x.

    CAS  Google Scholar 

  • Athwal, G. S.; Huber, S. C. Divalent cations and polyamines bind to loop 8 of 14-3-3 proteins, modulating their interaction with phosphorylated nitrate reductase. Plant J. 29: 119–129; 2002 doi:10.1046/j.0960-7412.2001.01200.x.

    PubMed  CAS  Google Scholar 

  • Bagga, S.; Rochford, J.; Klaene, Z.; Kuehn, G. D.; Phillips, G. C. Putrescine aminopropyl transferase is responsible for biosynthesis of spermidine, spermine, and multiple uncommon polyamines in osmotic stress-tolerant alfalfa. Plant Physiol. 114: 445–454; 1997.

    PubMed  CAS  Google Scholar 

  • Bagni, N.; Tassoni, A. Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants. Amino Acids 20: 301–317; 2001 doi:10.1007/s007260170046.

    PubMed  CAS  Google Scholar 

  • Bais, P. H.; Ravishankar, G. A. Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell Tissue Org. Cult. 69: 1–34; 2002.

    CAS  Google Scholar 

  • Bastola, D. R.; Minocha, S. C. Increased putrescine biosynthesis through transfer of mouse ornithine decarboxylase cDNA in carrot promotes somatic embryogenesis. Plant Physiol. 109: 63–71; 1995.

    PubMed  CAS  Google Scholar 

  • Besson-Bard, A.; Courtois, C.; Gauthier, A.; Dahan, J.; Dobrowolska, G.; Jeandroz, S.; Pugin, A.; Wendehenne, D. Nitric oxide in plants: production and cross-talk with Ca2+ signaling. Molecular Plant 1: 218–228; 2008 doi:10.1093/mp/ssm016.

    CAS  PubMed  Google Scholar 

  • Biondi, S.; Scaramagli, S.; Capatini, F.; Maddalena, Altamura, M.; Torrigiani, P. Methyl jasmonate upregulates biosynthesis gene expression, oxidation and conjugation of polyamines, and inhibits shoot formation in tobacco thin layers. J. Exp. Bot. 52: 231–242; 2001 doi:10.1093/jexbot/52.355.231.

    PubMed  CAS  Google Scholar 

  • Bortolotti, C.; Cordeiro, A.; Alcàzar, R.; Borrell, A.; Culiañez-Macià, F. A.; Tiburcio, A. F.; Altabella, T. Localization of arginine decarboxylase in tobacco plants. Physiol. Plant 120: 84–92; 2004 doi:10.1111/j.0031-9317.2004.0216.x.

    PubMed  CAS  Google Scholar 

  • Bozhkov, P. V.; Filonova, L. H.; Suarez, M. F. Programmed cell death in plant embryogenesis. Curr. Top. Dev. Biol. 67: 135–179; 2005 doi:10.1016/S0070-2153(05)67004-4.

    PubMed  CAS  Google Scholar 

  • Bregante, M.; Yang, Y.; Formentin, E.; Carpaneto, A.; Schroeder, J. I.; Gambale, F.; Schiavo, F. L.; Costa, A. KDC1, a carrot Shaker-like potassium channel, reveals its role as a silent regulatory subunit when expressed in plant cells. Plant Mol. Biol. 66: 61–72; 2008 doi:10.1007/s11103-007-9252-x.

    PubMed  CAS  Google Scholar 

  • Caffaro, S. V.; Antognoni, F.; Scaramagli, S.; Bagni, N. Polyamine translocation following photoperiodic flowering induction in soybean. Physiol. Plant 91: 251–256; 1994 doi:10.1111/j.1399-3054.1994.tb00426.x.

    CAS  Google Scholar 

  • Capell, T.; Bassie, L.; Christou, P. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc. Natl. Acad. Sci. U. S. A. 101: 9909–9914; 2004 doi:10.1073/pnas.0306974101.

    PubMed  CAS  Google Scholar 

  • Clay, N. K.; Nelson, T. Arabidopsis thickvein mutation affects vein thickness and organ vascularization, and resides in a provascular cell-specific spermine synthase involved in vein definition and in polar auxin transport. Plant Physiol. 138: 767–777; 2005 doi:10.1104/pp.104.055756.

    PubMed  CAS  Google Scholar 

  • Cona, A.; Rea, G.; Angelina, R.; Federico, R.; Tavladoraki, P. Functions of amine oxidases in plant development and defence. Trend Plant Sci. 11: 80–88; 2006 doi:10.1016/j.tplants.2005.12.009.

    CAS  Google Scholar 

  • Costa, A.; Carpaneto, A.; Varotto, S.; Formentin, E.; Marin, O.; Barizza, E.; Terzi, M.; Gambale, F.; Schiavo, F. L. Potassium and carrot embryogenesis: Are K+ channels necessary for development. Plant Mol. Biol. 54: 837–852; 2004 doi:10.1007/s11103-004-0236-9.

    PubMed  CAS  Google Scholar 

  • Coueé, I.; Hummel, I.; Sulmon, C.; Gouesbet, G.; El Amrani, A. Involvement of polyamines in root development. Plant Cell Tissue Org. Cult. 76: 1–10; 2004.

    Google Scholar 

  • Della Mea, M.; De Filippis, F.; Genovesi, V.; Serafini-Fracassini, D.; Del Duca, S. The acropetal wave of developmental cell death of tobacco corolla is preceded by activation of transglutaminase in different cell compartments. Plant Physiol. 144: 1211–1222; 2007b doi:10.1104/pp.106.092072.

    PubMed  CAS  Google Scholar 

  • Della Mea, M.; Serafini-Fracassini, D.; Del Duca, S. Programmed cell death: similarities and differences in animals and plants. A flower paradigm. Amino Acids 33: 395–404; 2007a doi:10.1007/s00726-007-0530-3.

    PubMed  CAS  Google Scholar 

  • Del Duca, S.; Beninati, S.; Serafini-Fracassini, D. Polyamines in chloroplasts: identification of their glutamyl and acetyl derivatives. Biochem. J. 305: 233–237; 1995.

    PubMed  CAS  Google Scholar 

  • Delis, C.; Dimou, M.; Efrose, R. C.; Flemetakis, E.; Aivalakis, G.; Katinakis, P. Ornithine decarboxylase and arginine decarboxylase gene transcripts are co-localized in developing tissues of Glycine max etiolated seedlings. Plant Physiol. Biochem. 43: 19–25; 2005 doi:10.1016/j.plaphy.2004.11.006.

    PubMed  CAS  Google Scholar 

  • Diepold, A.; Li, G.; Lennarz, W. J.; Nürnburger, T.; Brunner, F. The Arabidopsis AtPNG1 gene encodes a peptide: N-glycanase. Plant J. 52: 94–104; 2007 doi:10.1111/j.1365-313X.2007.03215.x.

    PubMed  CAS  Google Scholar 

  • Dobrovinskaya, O. R.; Müntz, J.; Pottosin, I. I. Asymmetric block of the plant vacuolar Ca2+ -permeable channel by organic cations. Eur. Biophys. J. 28: 552–563; 1999 doi:10.1007/s002490050237.

    PubMed  CAS  Google Scholar 

  • Evans, P. T.; Malmberg, R. L. Do polyamines have roles in plant development? Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 235–269; 1989.

    CAS  Google Scholar 

  • Feinberg, A. A.; Choi, J. H.; Lubich, W. P.; Sung, Z. R. Developmental regulation of polyamine metabolism in growth and differentiation of carrot culture. Planta 162: 532–539; 1984 doi:10.1007/BF00399919.

    Google Scholar 

  • Feirer, R. P.; Mignon, G.; Litvay, J. D. Arginine decarboxylase and polyamines required for embryogenesis in the wild carrot. Science 223: 1433–1435; 1984 doi:10.1126/science.223.4643.1433.

    PubMed  CAS  Google Scholar 

  • Formentin, E.; Naso, A.; Varotto, S.; Picco, C.; Gambale, F.; Schiavo, F. L. KDC2, a functional homomeric potassium channel expressed during carrot embryogenesis. FEBS Lett. 580: 5009–5015; 2006 doi:10.1016/j.febslet.2006.08.017.

    PubMed  CAS  Google Scholar 

  • Galston, A. W.; Sawhey, R. K. Polyamines and plant physiology. Plant Physiol. 94: 406–410; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Ge, C.; Cui, X.; Wang, Y.; Hu, Y.; Fu, Z.; Zhang, D.; Cheng, Z.; Li, J. BUD2, encoding an S-adenosylmethionine decarboxylase, is required for Arabidopsis growth and development. Cell Res. 16: 446–456; 2006 doi:10.1038/sj.cr.7310056.

    PubMed  CAS  Google Scholar 

  • Gemperlová, L.; Eder, J.; Cvikrová, M. Polyamine metabolism during the growth cycle of tobacco BY-2 cells. Plant Physiol. Biochem. 43: 375–381; 2005.

    PubMed  Google Scholar 

  • Gemperlová, L.; Novàková, M.; Vanková, R.; Eder, J.; Cvikrová, M. Diurnal changes in polyamine content, arginine and ornithine decarboxylase, and diamine oxidase in tobacco leaves. J. Exp. Bot. 57: 1413–1421; 2006 doi:10.1093/jxb/erj121.

    PubMed  Google Scholar 

  • Goldberg, R. B.; de Paiva, G.; Yadegari, R. Plant embryogenesis: zygote to seed. Science 266: 605–614; 1994 doi:10.1126/science.266.5185.605.

    PubMed  CAS  Google Scholar 

  • Hagenbeek, D.; Quatrano, R. S.; Rock, C. D. Trivalent ions activate abscisic acid-inducible promoters through an ABI1-dependent pathway in rice protoplasts. Plant Physiol. 123: 1553–1560; 2000 doi:10.1104/pp.123.4.1553.

    PubMed  CAS  Google Scholar 

  • Hanfrey, C.; Elliott, K. A.; Franceschetti, M.; Mayer, M. J.; Illingworth, C.; Michael, A. J. A dual upstream open reading frame-based autoregulatory circuit controlling polyamine-responsive translation. J. Biol. Chem. 47: 39229–39237; 2005 doi:10.1074/jbc.M509340200.

    Google Scholar 

  • Hanfrey, C.; Franceschetti, M.; Mayer, M. J.; Illingworth, C.; Elliott, K.; Collier, M.; Thompson, B.; Perry, B.; Michael, A. J. Translational regulation of the plant S-adenosylmethionine decarboxylase. Biochem. Soc. Trans. 31: 424–427; 2003 doi:10.1042/BST0310424.

    PubMed  CAS  Google Scholar 

  • Hanfrey, C.; Sommer, S.; Mayer, M. J.; Burtin, D.; Michael, A. J. Arabidopsis polyamine biosynthesis: absence of ornithine decarboxylase and the mechanism of arginine decarboxylase activity. Plant J. 27: 551–560; 2001 doi:10.1046/j.1365-313X.2001.01100.x.

    PubMed  CAS  Google Scholar 

  • Hanzawa, Y.; Takahashi, T.; Michael, A. J.; Burtin, D.; Long, D.; Pineiro, M.; Coupland, G.; Komeda, Y. ACAULIS5, and Arabidopsis gene required for stem elongation, encodes a spermine synthase. EMBO J. 19: 4248–4256; 2000 doi:10.1093/emboj/19.16.4248.

    PubMed  CAS  Google Scholar 

  • Heby, O. DNA methylation and polyamines in embryonic development and cancer. Int. J. Dev. Biol. 39: 737–757; 1995.

    PubMed  CAS  Google Scholar 

  • Hu, W. -W.; Gong, H.; Pua, E.-C. Modulation of SAMDC expression in Arabidopsis thaliana alters in vitro shoot organogenesis. Physiol. Plant 128: 740–750; 2006 doi:10.1111/j.1399-3054.2006.00799.x.

    CAS  Google Scholar 

  • Hummel, I.; Bourdais, G.; Gousbet, G.; Coueé, I.; Malmberg, R. L.; El Amrani, A. Differential gene expression of arginine decarboxylase ADC1 and ADC2 in Arabidopsis thaliana: characterization of transcriptional regulation during seed germination and seedling development. New Phytol. 163: 519–531; 2004 doi:10.1111/j.1469-8137.2004.01128.x.

    CAS  Google Scholar 

  • Ibaraki, Y.; Kurata, K. Automation of somatic embryo production. Plant Cell Tissue Org. Cult. 65: 179–199; 2001.

    CAS  Google Scholar 

  • Illingworth, C.; Mayer, M. J.; Elliott, K.; Hanfrey, C.; Walton, N. J.; Michael, A. J. The diverse bacterial origins of the Arabidopsis polyamine biosynthetic pathway. FEBS Lett. 549: 26–30; 2003 doi:10.1016/S0014-5793(03)00756-7.

    PubMed  CAS  Google Scholar 

  • Imai, A.; Akiyama, T.; Kato, T.; Sato, S.; Tabata, S.; Yamamoto, K. T.; Takahashi, T. Spermine is not essential for survival of Arabidopsis. FEBS Lett. 556: 148–152; 2004b doi:10.1016/S0014-5793(03)01395-4.

    PubMed  CAS  Google Scholar 

  • Imai, A.; Hanzawa, Y.; Komura, M.; Yamamoto, K. T.; Komeda, Y.; Takahashi, T. The dwarf phenotype of the Arabidopsis acl5 mutant is suppressed by a mutation in an upstream ORF of a bHLH gene. Development 133: 3575–3585; 2006 doi:10.1242/dev.02535.

    PubMed  CAS  Google Scholar 

  • Imai, A.; Matsuyama, T.; Hanzawa, Y.; Akiyama, T.; Tamaoki, M.; Saji, H.; Shirano, Y.; Kato, T.; Hayashi, H.; Shibata, D.; Tabata, S.; Komeda, Y.; Takahashi, T. Spermidine synthase genes are essential for survival of Arabidopsis. Plant Physiol. 135: 1565–1573; 2004a doi:10.1104/pp.104.041699.

    PubMed  CAS  Google Scholar 

  • Janowitz, T.; Kneifel, H.; Piotrowski, M. Identification and characterization of plant agmatine iminohydrolase, the last missing link in polyamine biosynthesis of plants. FEBS Lett. 544: 258–261; 2003 doi:10.1016/S0014-5793(03)00515-5.

    PubMed  CAS  Google Scholar 

  • Kakkar, R. K.; Sawhey, V. P. Polyamine research in plants—a changing perspective. Physiol. Plant. 116: 281–292; 2002 doi:10.1034/j.1399-3054.2002.1160302.x.

    CAS  Google Scholar 

  • Kaplan, B.; Davydov, O.; Knight, H.; Galon, Y.; Knight, K. R.; Fluhr, R.; Fromm, H. Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis. Plant Cell. 18: 2733–2748; 2006 doi:10.1105/tpc.106.042713.

    PubMed  CAS  Google Scholar 

  • Knott, J. M.; Römer, P.; Sumper, M. Putative spermine synthases from Thalassiosira pseudonana and Arabidopsis thaliana synthesize thermospermine rather than spermine. FEBS Lett. 581: 3081–3086; 2007 doi:10.1016/j.febslet.2007.05.074.

    PubMed  CAS  Google Scholar 

  • Kumria, R.; Rajam, M. V. Alteration in polyamine titres during Agrobacterium-mediated transformation of indica rice with ornithine decarboxylase gene affects plant regeneration potential. Plant Sci. 162: 769–777; 2002 doi:10.1016/S0168-9452(02)00020-1.

    CAS  Google Scholar 

  • Kusano, T.; Yamaguchi, K.; Berberich, T.; Takahashi, Y. Advances in polyamine research in 2007. J. Plant Res. 120: 345–350; 2007 doi:10.1007/s10265-007-0074-3.

    PubMed  CAS  Google Scholar 

  • Kwak, S.-H.; Lee, S. H. The transcript-level-independent activation of ornithine decarboxylase in suspension-cultured BY2 cells entering the cell cycle. Plant Cell Physiol. 43: 1165–1170; 2002 doi:10.1093/pcp/pcf132.

    PubMed  CAS  Google Scholar 

  • Lambe, P.; Mutambel, H. S. N.; Fouche, J. G.; Deltour, R.; Foidart, J. M. DNA methylation as a key process in regulation of organogenic totipotency and plant neoplastic progression. In Vitro Cell Dev. Biol. Plant 33: 155–162; 1997 doi:10.1007/s11627-997-0015-9.

    CAS  Google Scholar 

  • Liu, K. L.; Fu, H.; Bei, Q.; Luan, S. Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements. Plant Physiol. 124: 1315–1325; 2000 doi:10.1104/pp.124.3.1315.

    PubMed  CAS  Google Scholar 

  • Loenen, W. A. M. S-Adenosylmethionine: jack of all trades and master of everything? Biochem. Soc. Trans. 34: 330–333; 2006 doi:10.1042/BST20060330.

    PubMed  CAS  Google Scholar 

  • Loukanina, N.; Thorpe, T. A. Arginine and ornithine decarboxylases in embryonic and non-embryonic carrot cell suspensions. In Vitro Cell. Dev. Biol. Plant 44: 59–64; 2008 doi:10.1007/s11627-007-9080-3.

    CAS  Google Scholar 

  • Martin-Tanguay, J. Conjugated polyamines and reproductive development: biochemical, molecular and physiological approaches. Physiol. Plant. 100: 675–688; 1997 doi:10.1111/j.1399-3054.1997.tb03074.x.

    Google Scholar 

  • McDaniel, C. N.; Sangrey, K. A.; Jegla, D. E. Cryptic floral determination: stem explants from vegetative tobacco plants have the capacity to regenerate floral shoots. Dev. Biol. 134: 473–478; 1989 doi:10.1016/0012-1606(89)90120-6.

    PubMed  CAS  Google Scholar 

  • Mehta, R. A.; Cassol, T.; Li, N.; Ali, N.; Handa, A. K.; Mattoo, A. K. Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nature Biotechnol. 20: 613–618; 2002 doi:10.1038/nbt0602-613.

    CAS  Google Scholar 

  • Minocha, R.; Minocha, S. C.; Long, S. Polyamines and their biosynthetic enzymes during somatic embryo development in red spruce (Picea rubens Sarg.). In Vitro Cell Dev. Biol. Plant 40: 572–580; 2004 doi:10.1079/IVP2004569.

    CAS  Google Scholar 

  • Minocha, R.; Smith, D. R.; Reeves, C.; Steele, K. D.; Minocha, S. C. Polyamine levels during the development of zygotic and somatic embryos of Pinus radiate. Physiol. Plant 105: 155–164; 1999 doi:10.1034/j.1399-3054.1999.105123.x.

    CAS  Google Scholar 

  • Møller, S. G.; McPherson, M. J. Developmental expression and biochemical analysis of the Arabidopsis atao1 gene encoding an H2O2-generating diamine oxidase. Plant J 13: 781–791; 1998.

    PubMed  Google Scholar 

  • Munksgaard, D.; Mattsson, O.; Okkels, F. T. Somatic embryo development in carrot is associated with an increase in levels of S-adenosylmethionine, S-adenosylhomocysteine and DNA methylation. Physiol. Plant. 93: 5–10; 1995 doi:10.1034/j.1399-3054.1995.930102.x.

    CAS  Google Scholar 

  • Neill, S. Interactions between abscisic acid, hydrogen peroxide and nitric oxide mediate survival response during water stress. New Phytol. 175: 4–6; 2007 doi:10.1111/j.1469-8137.2007.02112.x.

    PubMed  CAS  Google Scholar 

  • Oliver, D.; Baukrowitz, T.; Fakler, B. Polyamines as gating molecules of inward-rectifier K+ channels. Eur. J. Biochem. 267: 5824–5829; 2000 doi:10.1046/j.1432-1327.2000.01669.x.

    PubMed  CAS  Google Scholar 

  • Oredsson, S. M. Polyamine dependence of normal cell-cycle progression. Biochem. Soc. Trans. 31: 366–370; 2003 doi:10.1042/BST0310366.

    PubMed  CAS  Google Scholar 

  • Orzaéz, D.; Granell, A. The plant homologue of the defender against apoptotic death gene is down-regulated during senescence of flower petals. FEBS Lett. 404: 275–278; 1997 doi:10.1016/S0014-5793(97)00133-6.

    PubMed  Google Scholar 

  • Palmieri, L.; Arrigoni, R.; Blanco, E.; Carrari, F.; Zanor, M. I.; Studart-Guimaraes, C.; Fernie, A. R.; Palmieri, F. Molecular identification of an Arabidopsis S-adenosylmethionine transporter. Analysis of organ distribution, bacterial expression, reconstitution into liposomes, and functional characterization. Plant Physiol. 142: 855–865; 2006 doi:10.1104/pp.106.086975.

    PubMed  CAS  Google Scholar 

  • Panicot, M.; Minguet, E. G.; Ferrando, A.; Alcázar, R.; Blázquez, M. A.; Carbonell, J.; Altabella, T.; Koncz, C.; Tiburcio, A. F. A polyamine metabolon involving aminopropyl transferase complexes in Arabidopsis. Plant Cell 14: 2539–2551; 2002 doi:10.1105/tpc.004077.

    PubMed  CAS  Google Scholar 

  • Papadakis, A. K.; Roubelakis-Angelakis, K. A. Polyamines inhibit NADPH oxidase-mediated superoxide generation and putrescine prevents programmed cell death induced by polyamine oxidase-generated hydrogen peroxide. Planta 220: 826–837; 2005 doi:10.1007/s00425-004-1400-9.

    PubMed  CAS  Google Scholar 

  • Paschalidis, K. A.; Roubelakis-Angelakis, K. A. Spatial and temporal distribution of polyamine levels and polyamine anabolism in different organs/tissues of the tobacco plant. Correlations with age, cell division/expansion, and differentiation. Plant Physiol. 138: 142–152; 2005 doi:10.1104/pp.104.055483.

    PubMed  CAS  Google Scholar 

  • Phillips, R.; Press, M. C.; Bingham, L.; Grimmer, C. Polyamines in cultured artichoke explants—effects are primarily on xylogenesis rather that cell-division. J. Exp. Bot. 39: 473–480; 1988 doi:10.1093/jxb/39.4.473.

    CAS  Google Scholar 

  • Piotrowski, M.; Kneifer, H. Plant C–N hydrolases and the identification of a plant N-carbamoylputrescine amidohydrolase involved in polyamine biosynthesis. J Biol. Chem. 278: 1708–1712; 2003 doi:10.1074/jbc.M205699200.

    PubMed  CAS  Google Scholar 

  • Puga-Hermida, M. I.; Gallardo, M.; Matilla, A. J. The zygotic embryogenesis and ripening of Brassica rapa seeds provokes important alterations in the levels of free and conjugated abscisic acid and polyamines. Physiol. Plant 117: 279–288; 2003 doi:10.1034/j.1399-3054.2003.00033.x.

    CAS  Google Scholar 

  • Rocha, P. S. C. F.; Sheikh, M.; Melchiorre, R.; Fagard, M.; Boutet, S.; Loach, R.; Moffatt, B.; Wagner, C.; Vaucheret, H.; Furner, I. The Arabidopsis homology-dependent gene silencing gene codes for an S-adenosyl-l-homocysteine hydrolase required for DNA methylation-dependent gene silencing. Plant Cell 17: 404–417; 2005 doi:10.1105/tpc.104.028332.

    PubMed  CAS  Google Scholar 

  • Santa-Catarina, C.; Silveira, V.; Balbuena, T. S.; Viana, A. M.; Estelita, M. E. M.; Handro, W.; Floh, E. I. S. IAA, ABA, polyamines and free amino acids associated with zygotic embryo development of Ocotea catharinensis. Plant Growth Regul. 49: 237–247; 2006 doi:10.1007/s10725-006-9129-z.

    CAS  Google Scholar 

  • Scaramagli, S.; Biondi, S.; Capitani, F.; Gerola, P.; Altamura, M. M.; Torrigiani, P. Polyamine conjugate levels and ethylene biosynthesis: inverse relationship with the vegetative bud formation in tobacco thin layers. Physiol. Plant 105: 367–376; 1999 doi:10.1034/j.1399-3054.1999.105223.x.

    CAS  Google Scholar 

  • Serafini-Fracassini, D.; Del Duca, S. Transglutaminases: widespread cross-linking enzymes in plants. Ann. Bot. 102: 145–452; 2008, May 20.

    PubMed  CAS  Google Scholar 

  • Shoeb, F.; Yadav, J. S.; Bajaj, S.; Rajam, M. V. Polyamines as biomarkers for plant regeneration capacity: improvement of regeneration by modulation of polyamine metabolism in different genotypes of indica rice. Plant Sci. 160: 1229–1235; 2001 doi:10.1016/S0168-9452(01)00375-2.

    PubMed  CAS  Google Scholar 

  • Silveira, V.; Balbuena, T. S.; Santa-Catarina, C.; Floh, E. I. S.; Guerra, M. P.; Handro, W. Biochemical changes during seed development in Pinus taeda L. Plant Growth Regul. 44: 147–156; 2004.

    Article  CAS  Google Scholar 

  • Stasolla, C.; van Zyl, L.; Egertsdotter, U.; Craig, D.; Liu, W.; Sederoff, R. R. The effects of polyethylene glycol on gene expression of developing white spruce somatic embryos. Plant Physiol. 131: 49–60; 2003 doi:10.1104/pp.015214.

    PubMed  CAS  Google Scholar 

  • Stasolla, C.; Yeung, E. C. Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tissue Org. Cult. 74: 15–35; 2003.

    CAS  Google Scholar 

  • Tassoni, A.; Fornalé, S.; Bagni, N. Putative ornithine decarboxylase activity in Arabidopsis thaliana: inhibition and intracellular localization. Plant Physiol. Biochem. 41: 871–875; 2003 doi:10.1016/S0981-9428(03)00141-4.

    CAS  Google Scholar 

  • Tavladoraki, P.; Rossi, M. N.; Saccuti, G.; Perez-Amador, M. A.; Polticelli, F.; Angelini, R.; Federico, R. Heterologous expression and biochemical characterization of a polyamine oxidase from Arabidopsis involved in polyamine back conversion. Plant Physiol. 141: 1519–1532; 2006 doi:10.1104/pp.106.080911.

    PubMed  CAS  Google Scholar 

  • Thorpe, T. A.; Stasolla, C. Somatic embryogenesis. In: S. S. Bhojwani, W. Y. Soh (Eds.), Current trends in the embryology of angiosperms. Kluwer, Dordrecht; 2001: pp. 279–336.

    Google Scholar 

  • Tiburcio, A. F.; Kaur-Sawhney, R.; Galston, A. W. Effect of polyamine biosynthetic inhibitors on alkaloids and organogenesis in tobacco callus culture. Plant Cell Tissue Org. Cult. 9: 111–120; 1987.

    CAS  Google Scholar 

  • Torrigiani, P.; Scaramagli, S.; Castiglione, S.; Altamura, M.; Biondi, S. Downregulation of ethylene production and biosynthetic gene expression is associated to changes in putrescine metabolism in shoot-forming tobacco thin layers. Plant Sci. 164: 1087–1094; 2003 doi:10.1016/S0168-9452(03)00115-8.

    CAS  Google Scholar 

  • Tun, N. N.; Santa-Catarina, C.; Begum, T.; Silveira, V.; Handro, W.; Floh, E. I. S.; Scherer, G. F. E. Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol. 47: 346–354; 2006 doi:10.1093/pcp/pci252.

    PubMed  CAS  Google Scholar 

  • Uemura, T.; Kashiwagi, K.; Igarashi, K. Polyamine uptake by DUR3 and SAM3 in Saccharomyces cerevisiae. J. Biol. Chem. 282: 7733–7741; 2007 doi:10.1074/jbc.M611105200.

    PubMed  CAS  Google Scholar 

  • Urano, K.; Hobo, T.; Shinozaki, K. Arabidopsis ADC genes involved in polyamine biosynthesis are essential for seed development. FEBS Lett. 579: 1557–1564; 2005 doi:10.1016/j.febslet.2005.01.048.

    PubMed  CAS  Google Scholar 

  • Urano, K.; Yoshiba, Y.; Nanjo, T.; Igarashi, Y.; Seki, M.; Sekiguchi, F.; Yamagushi-Shinozaki, K.; Shinozaki, K. Characterization of Arabidopsis genes involved in biosynthesis of polyamines in abiotic stress responses and developmental stages. Plant Cell Environ. 26: 1917–1926; 2003 doi:10.1046/j.1365-3040.2003.01108.x.

    CAS  Google Scholar 

  • Vandenberg, C. A. Integrins step up the pace of cell migration through polyamines and potassium channels. Proc. Natl. Acad. Sci. U. S. A. 105: 7109–7110; 2008 doi:10.1073/pnas.0803231105.

    PubMed  CAS  Google Scholar 

  • Venkatachalam, L.; Bhagyalakshmi, N. Spermine-induced morphogenesis and effect of partial immersion system on the shoot cultures of banana. Appl. Biochem. Biotechnol. 2008 doi:10.1007/s12010-008-8226-z.

  • Vuosku, J.; Jokela, A.; Läärä, E.; Sääskilahti, M.; Muili, R.; Sutela, S.; Altabella, T.; Sarjala, T.; Häggman, H. Consistency of polyamine profiles and expression of arginine decarboxylase in mitosis during zygotic embryogenesis of Scots pine. Plant Physiol. 142: 1027–1038; 2006 doi:10.1104/pp.106.083030.

    PubMed  CAS  Google Scholar 

  • Wachter, A.; Tunc-Ozdemir, M.; Grove, B. C.; Green, P. J.; Shintani, D. K.; Breaker, R. R. Riboswitch control of gene expression in plants by splicing and alternative 3′ end processing of mRNAs. Plant Cell 19: 3437–3450; 2007 doi:10.1105/tpc.107.053645.

    PubMed  CAS  Google Scholar 

  • Walden, R.; Cordeiro, A.; Tiburcio, A. F. Polyamines: small molecules triggering pathways in plant growth and development. Plant Physiol. 113: 1009–1013; 1997 doi:10.1104/pp.113.4.1009.

    PubMed  CAS  Google Scholar 

  • Wallace, H. M.; Fraser, A. V.; Hughes, A. A perspective of polyamine metabolism. Biochem. J. 376: 1–14; 2003 doi:10.1042/BJ20031327.

    PubMed  CAS  Google Scholar 

  • Wang, J. X.; Breaker, R. R. Riboswitches that sense S-adenosylmethionine and S-adenosylhomocysteine. Biochem. Cell. Biol. 86: 157–168; 2008 doi:10.1139/O08-008.

    PubMed  CAS  Google Scholar 

  • Wang, Y.; Xiao, L.; Thiagalingam, A.; Nelkin, B. D.; Casero, R. A. The identification of a Cis-element and a trans-acting factor involved in the response to polyamines and polyamine analogues in the regulation of the human spermidine/spermine N 1-acetyltransferase gene transcription. J. Biol. Chem. 51: 34623–34630; 1998 doi:10.1074/jbc.273.51.34623.

    Google Scholar 

  • Watson, M. B.; Emory, K. K.; Platak, R. M.; Malmberg, R. L. Arginine decarboxylase (polyamine synthesis) mutants of Arabidopsis thaliana exhibit altered root growth. Plant J. 13: 231–239; 1998 doi:10.1046/j.1365-313X.1998.00027.x.

    PubMed  CAS  Google Scholar 

  • Xiao, W.; Custard, K. D.; Brown, R. C.; Lemmon, B. E.; Harada, J. J.; Goldberg, R. B.; Fischer, R. L. DNA methylation is critical for Arabidopsis embryogenesis and seed viability. Plant Cell 18: 805–814; 2006 doi:10.1105/tpc.105.038836.

    PubMed  CAS  Google Scholar 

  • Yadav, J. S.; Rajam, M. V. Temporal regulation of somatic embryogenesis by adjusting cellular polyamine content in eggplant. Plant Physiol. 116: 617–625; 1998 doi:10.1104/pp.116.2.617.

    CAS  Google Scholar 

  • Yamaguchi, K.; Takahashi, Y.; Berberich, T.; Imai, A.; Miyazaki, A.; Takahashi, T.; Michael, A.; Kusano, T. The polyamine spermine protects against high salt stress in Arabidopsis thaliana. FEBS Lett. 580: 6783–6788; 2006 doi:10.1016/j.febslet.2006.10.078.

    PubMed  CAS  Google Scholar 

  • Yamaguchi, K.; Takahashi, Y.; Berberich, T.; Imai, A.; Takahashi, T.; Michael, A. J.; Kusano, T. A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochem. Biophys. Res. Commun. 352: 486–490; 2007 doi:10.1016/j.bbrc.2006.11.041.

    PubMed  CAS  Google Scholar 

  • Yamasaki, H.; Cohen, M. F. NO signal at the crossroads: polyamine-induced nitric oxide synthesis in plants. Trend Plant Sci. 11: 522–524; 2006.

    CAS  Google Scholar 

  • Zhao, F.; Song, C. -P.; He, J.; Zhu, H. Polyamines improve K+/Na+ homeostasis in barley seedlings by regulating root ion channel activities. Plant Physiol. 145: 1061–1072; 2007 doi:10.1104/pp.107.105882.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to thank Bert Luit for critically reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Stasolla.

Additional information

Editor: Nigel James Taylor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baron, K., Stasolla, C. The role of polyamines during in vivo and in vitro development. In Vitro Cell.Dev.Biol.-Plant 44, 384–395 (2008). https://doi.org/10.1007/s11627-008-9176-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-008-9176-4

Keywords

Navigation