Skip to main content
Log in

A simplified method for tissue engineering skeletal muscle organoids in vitro

  • Letter To The Editor
  • Scientific Reports
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Chromiak, J. A.; Vandenburgh, H. H. Glucocorticoid-induced skeletal muscle atrophy in vitro is attenuated by mechanical stimulation. Am. J. Physiol. Cell Physiol. 262:C1471-C1477; 1992.

    CAS  Google Scholar 

  2. Rando, T. A.; Blau, H. M. Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy. J. Cell Biol. 125:1275–1287; 1994.

    Article  PubMed  CAS  Google Scholar 

  3. Strohman, R. C.; Byne, E.; Spector, D., et al. Myogenesis and histogenesis of skeletal muscle on flexible membranes in vitro. In Vitro Cell. Dev. Biol. 26:201–208; 1990.

    Article  PubMed  CAS  Google Scholar 

  4. Swasdison, S.; Mayne, R. Formation of highly organized skeletal muscle fibers in vitro: comparison with muscle development in vivo. J. Cell Sci. 102:643–652; 1992.

    PubMed  Google Scholar 

  5. Vandenburgh, H. H. A computerized mechanical cell stimulator for tissue culture: effects on skeletal muscle organogenesis. In Vitro 24:609–619; 1988.

    CAS  Google Scholar 

  6. Vandenburgh, H. H.; Chromiak, J.; Shansky, J., et al. Space flight induces atrophy of tissue cultured skeletal myofibers. ASGSB Bull. 9:621995. (Abstract)

  7. Vandenburgh, H. H.; Del Tatto, M.; Shansky, J., et al. Tissue engineered skeletal muscle organoids for reversible gene therapy. Human Gene Therapy, 7:2195–2200; 1996.

    PubMed  CAS  Google Scholar 

  8. Vandenburgh, H. H.; Hatfaludy, S.; Shansky, J. Skeletal muscle growth is stimulated by intermittent stretch/relaxation in tissue culture. Am. J. Physiol. 256 (Cell Physiol. 25):C674-C682; 1989.

    PubMed  CAS  Google Scholar 

  9. Vandenburgh, H. H.; Karlisch, P. Longitudinal growth of skeletal myotubes in vitro in a new horizontal mechanical cell stimulator. In Vitro 25:607–616; 1989.

    CAS  Google Scholar 

  10. Vandenburgh, H. H.; Karlisch, P.; Farr, L. Maintenance of highly contractile skeletal myotubes in collagen gels. In Vitro 24:166–174; 1988.

    CAS  Google Scholar 

  11. Vandenburgh, H. H.; Shansky, J.; Karlisch, P., et al. Mechanical stimulation of skeletal muscle generates lipid-related second messengers by phospholipase activation. J. Cell. Physiol. 155:63–71; 1993.

    Article  PubMed  CAS  Google Scholar 

  12. Vandenburgh, H. H.; Shansky, J.; Solerssi, R., et al. Mechanical stimulation of skeletal muscle increases prostaglandin F production, cyclooxygenase activity, and cell growth by a pertussis toxin sensitive mechanism. J. Cell. Physiol. 163:285–294; 1995.

    Article  PubMed  CAS  Google Scholar 

  13. Vandenburgh, H. H.; Swasdison, S.; Karlisch, P. Computer aided mechanogenesis of skeletal muscle organs from single cells in vitro. FASEB J. 5:2860–2867; 1991.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shansky, J., Chromiak, J., Del Tatto, M. et al. A simplified method for tissue engineering skeletal muscle organoids in vitro . In Vitro Cell.Dev.Biol.-Animal 33, 659–661 (1997). https://doi.org/10.1007/s11626-997-0118-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-997-0118-y

Keywords

Navigation