Skip to main content

Advertisement

Log in

Electrochemical assembly of homogenized poly(3,4-ethylenedioxythiophene methanol)/SWCNT nano-networks and their high performances for supercapacitor electrodes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Homogenized PEDOT/CNT composite is difficult to be fabricated directly from aqueous solution without any solubilizers due to the limitation of insoluble EDOT. Through the introduction of hydroxymethyl group (MeOH) on the EDOT side chain, the designed EDOT-MeOH has very good solubility in aqueous solution. Herein, we firstly used one-step electrochemical co-deposition method to prepare a homogenized PEDOT-MeOH/SWCNT nano-network from the mixed aqueous solution of EDOT-MeOH and SWCNT. SEM and TEM indicated that PEDOT-MeOH uniformly coated on the surface of SWCNT and formed a three-dimensional interpenetrating network. With the increase in the deposited cycles, the thickness of PEDOT-MeOH coating on SWCNT increased regularly. The optimized PEDOT-MeOH/SWCNT nano-network in H2SO4 solution had a specific capacitance of 114.3 mF cm−2 at 5 mV s−1, which was higher than that of PEDOT-MeOH (58.8 mF cm−2), and showed good cycle stability of 80% after 5000 cycles. The enhanced performance mainly comes from the three-dimensional interpenetrating nano-network and the synergistic effect between SWCNT and PEDOT-MeOH. This work realized the facile combination of PEDOT derivatives and SWCNT from pure water solution, which will have good application in electrochemical energy storage devices and in the biosensors and bioelectronics areas due to its good biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu M, Liu YQ, Yan Y, Wang FS, Liu JH, Liu TX (2017) A highly conductive carbon–sulfur film with interconnected mesopores as an advanced cathode for lithium–sulfur batteries. Chem Commun 53:9097–9100

    CAS  Google Scholar 

  2. Wei HG, Wang H, Li A, Li HQ, Cui DP, Dong MY, Lin J, Fan JC, Zhang JX, Hou H, Shi YP, Zhou DF, Guo ZH (2019) Advanced porous hierarchical activated carbon derived from agricultural wastes toward high performance supercapacitors. J Alloy Compd:153111

  3. Zhai YJ, Wang J, Gao Q, Fan YQ, Hou CX, Hou Y, Liu H, Shao Q, Wu SD, Zhao LL, Ding T, Dang F, Guo ZH (2019) Highly efficient cobalt nanoparticles anchored porous N-doped carbon nanosheets electrocatalysts for Li-O2 batteries. J Catal 377:534–542

    CAS  Google Scholar 

  4. Ren J, Luo Q, Hou QZ, Chen H, Liu T, He HC, Wang JS, Shao Q, Dong MY, Wu SD, Wang N, Lin J, Guo ZH (2019) Suppressing charge recombination and ultraviolet light degradation of perovskite solar cells using silicon oxide passivation. Chemelectrochem 6:3167–3174

    CAS  Google Scholar 

  5. Kirubasankar B, Murugadoss V, Lin J, Ding T, Dong MY, Lu H, Zhang JX, Li TX, Wang N, Guo ZH (2018) In situ grown nickel selenide on graphene nanohybrid electrodes for high energy density asymmetric supercapacitors. Nanoscale 10:20414–20425

    CAS  PubMed  Google Scholar 

  6. Yang LJ, Shi MJ, Jiang JT, Liu YC, Yan C, Liu H, Guo ZH (2019) Heterogeneous interface induced formation of balsam pear-like PPy for high performance supercapacitors. Mater Lett 244:27–30

    CAS  Google Scholar 

  7. Du W, Wang XN, Zhan J, Sun XQ, Kang LT, Jiang FY, Zhang XY, Shao Q, Dong MY, Liu H, Murugadoss V, Guo ZH (2019) Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors. Electrochim Acta 296:907–915

    CAS  Google Scholar 

  8. Le K, Wang Z, Wang FL, Wang Q, Shao Q, Murugadoss V, Wu SD, Liu W, Liu JR, Gao Q, Guo ZH (2019) Sandwich-like NiCo layered double hydroxide/reduced graphene oxide nanocomposite cathodes for high energy density asymmetric supercapacitors. Dalton Trans 48:5193–5202

    CAS  PubMed  Google Scholar 

  9. Liu YC, Narayanasamy M, Yang C, Shi MJ, Xie W, Wu HZ, Yan C, Hou H, Guo ZH (2019) High-performance coaxial wire-shaped supercapacitors using ionogel electrolyte toward sustainable energy system. J Mater Res 34:3030–3039

    CAS  Google Scholar 

  10. Zhang L, Jamal R, Zhao Q, Wang M, Abdiryim T (2015) Preparation of PEDOT/GO, PEDOT/MnO2, and PEDOT/GO/MnO2 nanocomposites and their application in catalytic degradation of methylene blue. Nanoscale Res Lett 10:148

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Liang A, Zhang Y, Jiang F, Zhou W, Xu J, Hou J, Wu Y, Ding Y, Duan X (2019) Electrochemical self-assembly of a 3D interpenetrating porous network PEDOT-PEG-WS2 nanocomposite for high-efficient energy storage. J Phys Chem C 123:25428–25436

    CAS  Google Scholar 

  12. Zhou W, Xu J (2016) High-operating-voltage all-solid-state symmetrical supercapacitors based on poly(3,4-ethylenedioxythiophene)/poly (styrenesulfonate) films treated by organic solvents. Electrochim Acta 222:1895–1902

    CAS  Google Scholar 

  13. Moussa M, Shi G, Wu H, Zhao ZH, Voelcker NH, Losic D, Ma J (2017) Development of flexible supercapacitors using an inexpensive graphene/PEDOT/MnO2 sponge composite. Mater Design 125:1–10

    CAS  Google Scholar 

  14. Li D, Zhu D, ZhouW ZQ, WangT YG, Lv L, Xu J (2017) Design and electrosynthesis of monolayered MoS2 and BF4-doped poly(3,4-ethylenedioxythiophene) nanocomposites for enhanced supercapacitive performance. J Electroanal Chem 801:345–353

    CAS  Google Scholar 

  15. Chen JW, Yu QL, Cui XH, Dong MY, Zhang JX, Wang C, Fan JC, Zhu YT, Guo ZH (2019) An overview of stretchable strain sensors from conductive polymer nanocomposites. J Mater Chem C 7:11710–11730

    CAS  Google Scholar 

  16. Lota K, Khomenko V, Frackowiak E (2004) Capacitance properties of poly(3,4-ethylenedioxythiophene)/carbon nanotubes composites. J Phys Chem Solids 65:295–301

    CAS  Google Scholar 

  17. Tang PY, Zhao YQ, Xu CL (2013) Step-by-step assembled poly (3, 4-ethylenedioxythiophene)/manganese dioxide composite electrodes: tuning the structure for high electrochemical performance. Electrochim Acta 89:300–309

    CAS  Google Scholar 

  18. Tahir M, He L, Haider WA, Yang W, Hong XF, Guo YQ, Pan XL, Tang H, Li YX, Mai LQ (2019) Co-electrodeposited porous PEDOT–CNT microelectrodes for integrated micro-supercapacitors with high energy density, high rate capability, and long cycling life. Nanoscale 11:7761–7770

    CAS  PubMed  Google Scholar 

  19. Ajjan FN, Casado N, Rebis T, Elfwing A, Solin N, Mecerreyes D, Inganas O (2016) High performance PEDOT/lignin biopolymer composites for electrochemical supercapacitors. J Mater Chem A 4:1838–1847

    CAS  Google Scholar 

  20. Ma XM, Zhou WQ, Wang ZP, Mo DZ, Duan XM, Xu JK (2015) Preparation of aqueous poly(3,4-ethylenedioxythiophene methanol)-poly (styrene sulfonate) dispersion and its capacitance performance as symmetric supercapacitors. J Solid State Electrochem 19:3329–3338

    CAS  Google Scholar 

  21. Wu LP, Lu LM, Zhang L, Xu JK, Zhang KX, Wen YP, Duan XM, Yang F (2013) Electrochemical determination of the anticancer herbal drug shikonin at a nanostructured poly (hydroxymethylated-3,4-ethylenedioxythiophene) modified electrode. Electroanal 25:2244–2250

    CAS  Google Scholar 

  22. Xiao YH, Cui XY, Hancock JM, Bouguettaya M, Reynolds JR, Martin DC (2004) Electrochemical polymerization of poly (hydroxymethylated-3,4-ethylenedioxythiophene) (PEDOT-MeOH) on multichannel neural probes. Sensor Actuat B Chem 99:437–443

    CAS  Google Scholar 

  23. Zhang XH, Wang SS, Lu S, Su J, He T (2014) Influence of doping anions on structure and properties of electro-polymerized polypyrrole counter electrodes for use in dye-sensitized solar cells. J Power Sources 246:491–498

    CAS  Google Scholar 

  24. Ma XM, Zhou WQ, Mo DZ, Zhang KX, Wang ZP, Jiang FX, Hu DF, Dong LQ, Xu JK (2015) Electrochemical preparation of poly(2,3-dihydrothieno[3,4-b][1,4]dioxin-2-yl) methanol)/carbon fiber core/shell structure composite and its high capacitance performance. J Electroanal Chem 743:53–59

  25. Lin Y-F, Li C-T, Ho K-C (2016) A template-free synthesis of the hierarchical hydroxymethyl PEDOT tube-coral array and its application in dye-sensitized solar cells. J Mater Chem A 4:384–394

    CAS  Google Scholar 

  26. Wu LP, Zhang L, Lu LM, Duan XM, Xu JK, Nie T (2014) Graphene oxide doped poly (hydroxymethylated-3,4-ethylenedioxythiophene): enhanced sensitivity for electrochemical determination of rutin and ascorbic acid. Chinese J Polym Sci 32:1019–1031

    CAS  Google Scholar 

  27. Li GX, Hou PX, Luan J, Li JC, Li X, Wang H, Shi C, Liu C, Cheng HM (2018) A MnO2 nanosheet/single-wall carbon nanotube hybrid fiber for wearable solid-state supercapacitors. Carbon 140:634–643

    CAS  Google Scholar 

  28. Kumar A, Sarkar D, Mukherjee S, Patil S, Sarma DD, Shukla A (2018) Realizing an asymmetric supercapacitor employing carbon nanotubes anchored to Mn3O4 cathode and Fe3O4 anode. ACS Appl Mater Inter 10:42484–42493

    CAS  Google Scholar 

  29. Peng C, Jin J, Chen GZ (2007) A comparative study on electrochemical co-deposition and capacitance of composite films of conducting polymers and carbon nanotubes. Electrochim Acta 53:525–537

    CAS  Google Scholar 

  30. Luo Q, Ma H, Hou QZ, Li YX, Ren J, Dai XZ, Yao ZB, Zhou Y, Xiang LC, Du HY, He HC, Wang N, Jiang KL, Lin H, Zhang HW, Guo ZH (2018) All-carbon-electrode-based endurable flexible perovskite solar cells. Adv Funct Mater 28:1706777

    Google Scholar 

  31. Dong M, Wang C, Liu H, Liu CT, Shen CY, Zhang JX, Jia CHZ, Ding T, Guo ZH (2019) Enhanced solid particle Erosion properties of thermoplastic polyurethane-carbon nanotube Nanocomposites. Macromol Mater Eng 304:1900010

    Google Scholar 

  32. Shi SY, Wang LY, Pan YM, Liu CT, Liu XH, Li YC, Zhang JX, Zheng GQ, Guo ZH (2019) Remarkably strengthened microinjection molded linear low-density polyethylene (LLDPE) via multi-walled carbon nanotubes derived nanohybrid shish-kebab structure. Compos Part B Eng 167:362–369

    CAS  Google Scholar 

  33. Peng C, Zhang SW, Jewell D, Chen GZ (2008) Carbon nanotube and conducting polymer composites for supercapacitors. Prog Nat Sci 18:777–788

    CAS  Google Scholar 

  34. He SQ, Wei JQ, Guo FM, Xu RQ, Li C, Cui X, Zhu HW, Wang KL, Wu DH (2014) A large area, flexible polyaniline/buckypaper composite with a core-shell structure for efficient supercapacitors. J. Mater Chem A 2:5898–5902

    CAS  Google Scholar 

  35. Tran TP, Do QH (2017) High-performance supercapacitor electrode based on buckypaper/polyaniline composite. J Electron Mater 46:6056–6062

    CAS  Google Scholar 

  36. Dhibar S, Das CK (2015) Electrochemical performances of silver nanoparticles decorated polyaniline/graphene nanocomposite in different electrolytes. J Alloy Compd 653:486–497

    CAS  Google Scholar 

  37. Li CX, He P, Tang Z, He MQ, Dong FQ, Zhang XJ, Liu HH, Wang S (2018) CTAB-assisted microemulsion synthesis of unique 3D network nanostructured polypyrrole presenting significantly diverse capacitance performances in different electrolytes. J Mater Sci Mater El 29:17552–17562

    CAS  Google Scholar 

  38. Lu Y, Wen YP, Lu BY, Duan XM, Xu JK, Zhang L, Huang Y (2012) Electrosynthesis and characterization of poly (hydroxy-methylated-3, 4-ethylenedioxythiophene) film in aqueous micellar solution and its biosensing application. Chinese J Polym Sci 30:824–836

    CAS  Google Scholar 

  39. Hughes M, Chen GZ, Shaffer MSP, Fray DJ, Windle AH (2002) Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole. Chem Mater 14:1610–1613

    CAS  Google Scholar 

  40. Niu ZQ, Luan PS, Shao Q, Dong HB, Li JZ, Chen J, Zhao D, Cai L, Zhou WY, Xie SS (2012) A “skeleton/skin” strategy for preparing ultrathin free-standing single-walled carbon nanotube polyaniline films for high performance supercapacitor electrodes. Energy Environ Sci 5:8726–8733

    CAS  Google Scholar 

  41. Cataldo F, Compagnini G, Patane G, Ursini O, Angelini G, Margaritondo G, Cricenti A, Valentini F (2010) Graphene nanoribbons produced by the oxidative unzipping of single-wall carbon nanotubes. Carbon 48:2596–2602

    CAS  Google Scholar 

  42. Jian JM, Guo XS, Lin LW, Cai Q, Cheng J, Li JP (2013) Gas-sensing characteristics of dielectrophoretically assembled composite film of oxygen plasma-treated SWCNTs and PEDOT/PSS polymer. Sensor Actuat B 178:279–288

    CAS  Google Scholar 

  43. Kitamura H, Takeuchi H, Ohno M (2011) The method for surface functionalization of single-walled carbon nanotubes with fuming nitric acid. Carbon 49:3851–3856

    CAS  Google Scholar 

  44. Song HJ, Liu CC, Xu JK, Jiang QL, Shi H (2013) Fabrication of a layered nanostructure PEDOT:PSS/SWCNTs composite and its thermoelectric performance. RSC Adv 3:22065–22071

    CAS  Google Scholar 

  45. Dikmen G, Alver O (2019) Structural characterization of interaction between SWCNTs and 6-phenyl-2-thiouracil by molecular spectroscopic methods. Chem Phys Lett 734:136734

    CAS  Google Scholar 

  46. Li J, Liu JC, Gao CJ (2010) On the mechanism of conductivity enhancement in PEDOT/PSS film doped with multi-walled carbon nanotubes. J Polym Res 17:713–718

    Google Scholar 

  47. Simotwo SK, DelRe C, Kalra V (2016) Supercapacitor electrodes based on high-purity electrospun polyaniline and polyaniline-carbon nanotube nanofibers. ACS Appl Mater Inter 8:21261–21269

    CAS  Google Scholar 

  48. Liu MK, Li BM, Zhou H, Chen C, Liu YQ, Liu TX (2017) Extraordinary rate capability achieved by a 3D “skeleton/skin” carbon aerogel–polyaniline hybrid with vertically aligned pores. Chem Commun 53:2810–2813

    CAS  Google Scholar 

  49. Liang AQ, Li DQ, Zhou WQ, Wu YL, Ye G, Wu J, Chang YN, Wang R, Xu JK, Nie GM, Hou J, Du YK (2018) Robust flexible WS2/PEDOT:PSS film for use in high-performance miniature Supercapacitors. J Electroanal Chem 824:136–146

    CAS  Google Scholar 

  50. Liu FW, Luo SJ, Liu D, Chen W, Huang Y, Dong L, Wang L (2017) Facile processing of free-standing polyaniline/SWCNT film as an integrated electrode for flexible supercapacitor application. ACS Appl Mater Inter 9:33791–33801

    CAS  Google Scholar 

  51. Wang K, Zhao P, Zhou XM, Wu HP, Wei ZX (2011) Flexible supercapacitors based on cloth-supported electrodes of conducting polymer nanowire array/SWCNT composites. J Mater Chem 21:16373–16378

    CAS  Google Scholar 

  52. Liu WW, Yan XB, Chen JT, Feng YQ, Xue QJ (2013) Novel and high-performance asymmetric micro-supercapacitors based on grapheme quantum dots and polyaniline nanofibers. Nanoscale 5:6053–6062

    CAS  PubMed  Google Scholar 

  53. Miao FJ, Shao CL, Li XH, Wang KX, Lu N, Liu YC (2016) Electrospun carbon nanofibers/carbon nanotubes/polyaniline ternary composites with enhanced electrochemical performance for flexible solid-state supercapacitors. ACS Sustain Chem Eng 4:1689–1696

    CAS  Google Scholar 

  54. Liu D, Wang X, Deng JX, Zhou CL, Guo JS, Liu P (2015) Crosslinked carbon nanotubes/polyaniline composites as a pseudocapacitive material with high cycling stability. Nanomaterials-Basel 5:1034–1047

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu WW, Lu CX, Li HL, Tay RYJ, Sun LM, Wang XH, Chow WL, Wang XL, Tay BK, Chen ZW, Yan J, Feng K, Lui G, Tjandra R, Rasenthiram L, Chiu G, Yu A (2016) Paper-based all-solid-state flexible micro-supercapacitors with ultra-high rate and rapid frequency response capabilities. J Mater Chem A 4:3754–3767

    CAS  Google Scholar 

  56. Han ZJ, Huang C, Meysami SS, Piche D, Seo DH, Pineda S, Murdock AT, Bruce PS, Grant PS, Grobert N (2018) High-frequency supercapacitors based on doped carbon nanostructures. Carbon 126:305–312

    CAS  Google Scholar 

  57. Kurra N, Hota MK, Alshareef HN (2015) Conducting polymer micro-supercapacitors for flexible energy storage and acline-filtering. Nano Energy 13:500–508

    CAS  Google Scholar 

  58. Islam N, Warzywoda J, Fan ZY (2018) Edge-oriented graphene on carbon nanofiber for high-frequency supercapacitors. Nano-Micro Lett 10:9

    Google Scholar 

  59. Zhang YD, An YF, Wu LY, Chen H, Li ZH, Dou H, Murugadoss V, Fan JC, Zhang XG, Mai XM, Guo ZH (2019) Metal-free energy storage systems: combining batteries with capacitors based on a methylene blue functionalized graphene cathode. J Mater Chem A 7:19668–19675

    CAS  Google Scholar 

  60. Zhong C, Deng YD, Hu WB, Qiao JL, Zhang L, Zhang JJ (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44:7484–7539

    CAS  PubMed  Google Scholar 

  61. Galinski M, Lewandowski A, Stepniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51:5567–5580

    CAS  Google Scholar 

  62. Pognon G, Brousse T, Demarconnay L, Bélanger D (2011) Performance and stability of electrochemical capacitor based on anthraquinone modified activated carbon. J Power Sources 196:4117–4122

    CAS  Google Scholar 

  63. Andreas HA, Conway BE (2006) Examination of the double-layer capacitance of an high specific-area C-cloth electrode as titrated from acidic to alkaline pHs. Electrochim Acta 51:6510–6520

    CAS  Google Scholar 

  64. Zhang HR, Wang JX, Chen YY, Wang Z, Wang SC (2013) Long-term cycling stability of polyaniline on graphite electrodes used for supercapacitors. Electrochim Acta 105:69–74

    CAS  Google Scholar 

  65. Zhou HH, Han GY (2016) One-step fabrication of heterogeneous conducting polymers-coated graphene oxide/carbon nanotubes composite films for high-performance supercapacitors. Electrochim Acta 192:448–455

    CAS  Google Scholar 

  66. Zhou HH, Han GY, Chang YZ, Fu DY, Xiao YM (2015) Highly stable multi-wall carbon nanotubes@poly(3,4-ethylenedioxythiophene)/poly (styrene sulfonate) coreeshell composites with three-dimensional porous nano-network for electrochemical capacitors. J Power Sources 274:229–236

    CAS  Google Scholar 

  67. Zhou HH, Zhai HJ, Han GY (2016) Superior performance of highly flexible solid-state supercapacitor based on the ternary composites of graphene oxide supported poly (3, 4-ethylenedioxythiophene)-carbon nanotubes. J Power Sources 323:125–133

    CAS  Google Scholar 

  68. Tong LY, Liu J, Boyera SM, Sonnenberg LA, Foxa MT, Ji DS, Feng J, Berniera WE, Jones WE Jr (2017) Vapor-phase polymerized poly(3,4-ethylenedioxythiophene) (PEDOT)/TiO2 composite fibers as electrode materials for supercapacitors. Electrochim Acta 224:133–141

    CAS  Google Scholar 

  69. Tang P, Han L, Zhang L (2014) Facile synthesis of graphite/PEDOT/MnO2 composites on commercial supercapacitor separator membranes as flexible and high-performance supercapacitor electrodes. ACS Appl Mater Inter 6:10506–10515

    CAS  Google Scholar 

  70. Han Y, Ding B, Tong H, Zhang XG (2011) Capacitance properties of graphite oxide/poly (3, 4-ethylene dioxythiophene) composites. J Appl Polym Sci 121:892–898

    CAS  Google Scholar 

  71. Kurra N, Hota MK, Alshareef HN (2015) Conducting polymer micro-supercapacitors for flexible energy storage and Ac line-filtering. Nano Energy 13:500–508

    CAS  Google Scholar 

  72. Wang X, Gao K, Shao ZQ, Peng XQ, Wu X (2014) Layer-by-layer assembled hybrid multilayer thin film electrodes based on transparent cellulose nanofibers paper for flexible supercapacitors applications. J Power Sources 249:148–155

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51862011, 51662012, 51863009, 51762018, 51762020), the Natural Science Foundation of Jiangxi Province (20171BAB206013), Innovation Driven “5511” Project of Jiangxi Province (20165BCB18016), the Academic and Technical Leader Plan of Jiangxi Provincial Main Disciplines (20182BCB22014), and Scientific Research Projects (2016QNBJRC001, 2015CXTD001) of Jiangxi Science and Technology Normal University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiqiang Zhou or Jingkun Xu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2937 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, H., Jiang, F. et al. Electrochemical assembly of homogenized poly(3,4-ethylenedioxythiophene methanol)/SWCNT nano-networks and their high performances for supercapacitor electrodes. Ionics 26, 3631–3642 (2020). https://doi.org/10.1007/s11581-020-03475-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03475-y

Keywords

Navigation