Skip to main content

Advertisement

Log in

Hard carbon derived from corn straw piths as anode materials for sodium ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Hard carbon is considered as the most promising anode material for practical sodium ion batteries. Herein, we report biomass-derived hard carbon made from corn straw piths through a simple carbonization process. X-ray diffraction patterns and Raman spectra elucidated highly disordered structures, and high-resolution transmission electron microscopy confirmed that the hard carbons have many local ordered structures containing turbostratic nanodomains and more nanovoids surround the turbostratic nanodomains. The electrochemical performances of the hard carbons were systematically investigated in sodium ion batteries. By optimizing the carbonization temperature, the sample carbonized at 1400 °C (HC1400) exhibited high reversible capacity of 310 mAh g−1 and good cycling stability; the capacity can still retain 274 mAh g−1 after 100 cycles. More importantly, HC1400 can deliver reversible capacity of 206 mAh g−1 with 79% retention rate after 700 cycles measured at a current density of 200 mA g−1, which is much better than those in most previous reports. This study provides a way to develop inexpensive, renewable, and recyclable materials from biomasses towards next-generation energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dunn B, Kamath H, Tarascon J (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935

    Article  CAS  Google Scholar 

  2. Bruce P, Scrosati B, Tarascon J (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946

    Article  CAS  Google Scholar 

  3. Pan H, Hu Y, Chen L (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 6:2338–2360

    Article  CAS  Google Scholar 

  4. Manthiram A (2011) Materials challenges and opportunities of lithium ion batteries. J Phys Chem Lett 2:176–184

    Article  CAS  Google Scholar 

  5. Su L, Jing Y, Zhou Z (2011) Li ion battery materials with core-shell nanostructures. Nanoscale 3:3967–3983

    Article  CAS  Google Scholar 

  6. Zhong Y, Yang M, Zhou X, Luo Y, Wei J, Zhou Z (2015) Orderly packed anodes for high-power lithium-ion batteries with super-long cycle life: rational design of MnCO3/large-area graphene composites. Adv Mater 27:806–812

    Article  CAS  Google Scholar 

  7. Zhu Y, Qi X, Chen X, Zhou X, Zhang X, Wei J, Hu Y, Zhou Z (2016) A P2-Na0.67Co0.5Mn0.5O2 cathode material with excellent rate capability and cycling stability for sodium ion batteries. J Mater Chem A 4:11103–11109

    Article  CAS  Google Scholar 

  8. Zhou X, Zhong Y, Yang M, Hu M, Wei J, Zhou Z (2014) Sb nanoparticles decorated N-rich carbon nanosheets as anode materials for sodium ion batteries with superior rate capability and long cycling stability. Chem Commun 50:12888–12891

    Article  CAS  Google Scholar 

  9. Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682

    Article  CAS  Google Scholar 

  10. Kim S, Seo D, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2:710–721

    Article  CAS  Google Scholar 

  11. Wen Y, He K, Zhu Y, Han F, Xu Y, Matsuda I, Ishii Y, Cumings J, Wang C (2014) Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 5:4033

    CAS  Google Scholar 

  12. Wang S, Xia L, Yu L, Zhang L, Wang H, Lou X (2016) Free-standing nitrogen-doped carbon nanofiber films:integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability. Adv Energy Mater 6:1502217

    Article  Google Scholar 

  13. Wang M, Yang Z, Li W, Gu L, Yu Y (2016) Superior sodium storage in 3D interconnected nitrogen and oxygen dual-doped carbon network. Small 12:2559–2566

    Article  CAS  Google Scholar 

  14. Zhang C, Wang X, Liang Q, Liu X, Weng Q, Liu J, Yang Y, Dai Z, Ding K, Bando Y, Tang J, Golberg D (2016) Amorphous phosphorus/nitrogen-doped graphene paper for ultrastable sodium-ion batteries. Nano Lett 16:2054–2060

    Article  CAS  Google Scholar 

  15. Li Z, Ding J, Mitlin D (2015) Tin and tin compounds for sodium ion battery anodes: phase transformations and performance. Acc Chem Res 48:1657–1665

    Article  CAS  Google Scholar 

  16. Chen C, Wen Y, Hu X, Ji X, Yan M, Mai L, Hu P, Shan B, Huang Y (2015) Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat Commun 6:6929

    Article  CAS  Google Scholar 

  17. Wang L, Bi X, Yang S (2016) Partially single-crystalline mesoporous Nb2O5 nanosheets in between graphene for ultrafast sodium storage. Adv Mater 28:7672–7679

    Article  CAS  Google Scholar 

  18. Dong S, Shen L, Li H, Pang G, Dou H, Zhang X (2016) Flexible sodium-ion pseudocapacitors based on 3D Na2Ti3O7 nanosheet arrays/carbon textiles anodes. Adv Funct Mater 26:3703–3710

    Article  CAS  Google Scholar 

  19. Wu C, Jiang Y, Kopold P, van Aken PA, Maier J, Yu Y (2016) Peapod-like carbon-encapsulated cobalt chalcogenide nanowires as cycle-stable and high-rate materials for sodium-ion anodes. Adv Mater 28:7276–7283

    Article  CAS  Google Scholar 

  20. Zhang N, Han X, Liu Y, Hu X, Zhao Q, Chen J (2015) 3D porous γ-Fe2O3@C nanocomposite as high-performance anode material of Na-ion batteries. Adv Energy Mater 5:1401123

    Article  Google Scholar 

  21. Zhu C, Mu X, van Aken PA, Yu Y, Maier J (2014) Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew Chem Int Ed 53:2152–2156

    Article  CAS  Google Scholar 

  22. Doeff M, Ma Y, Visco S, Jonghe L (1993) Electrochemical insertion of sodium into carbon. J Electrochem Soc 140:169–170

    Article  Google Scholar 

  23. Zhang B, Ghimbeu C, Laberty C, Vix-Guterl C, Tarascon J (2016) Correlation between microstructure and Na storage behavior in hard carbon. Adv Energy Mater 6:1501588

    Article  Google Scholar 

  24. Stevensa D, Dahn J (2000) High capacity anode materials for rechargeable sodium-ion batteries. J Electrochem Soc 147:1271–1273

    Article  Google Scholar 

  25. Li Y, Hu Y, Titirici M, Chen L, Huang X (2016) Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv Energy Mater 6:1600659

    Article  Google Scholar 

  26. Li Y, Hu Y, Li H, Chen L, Huang X (2016) A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries. J Mater Chem A 4:96–104

    Article  Google Scholar 

  27. Li Y, Xu S, Wu X, Yu J, Wang Y, Hu Y, Li H, Chen L, Huang X (2015) Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. J Mater Chem A 3:71–77

    Article  CAS  Google Scholar 

  28. Li Y, Mu L, Hu Y, Li H, Chen L, Huang X (2016) Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries. Energy Storage Mater 2:139–145

    Article  Google Scholar 

  29. Zhang J, Wang D, Lv W, Zhang S, Liang Q, Zheng D, Kang F, Yang Q (2017) Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase. Energy Environ Sci 10:370–376

    Article  CAS  Google Scholar 

  30. Xiao L, Cao Y, Henderson W, Sushko M, Shao Y, Xiao J, Wang W, Engelhard M, Nie Z, Liu J (2016) Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. Nano Energy 19:279–288

    Article  CAS  Google Scholar 

  31. Ding J, Wang H, Li Z, Kohandehghan A, Cui K, Xu Z, Zahiri B, Tan X, Lotfabad E, Olsen B, Mitlin D (2013) Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 7:11004–11015

    Article  CAS  Google Scholar 

  32. Cao Y, Xiao L, Sushko M, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf L, Yang Z, Liu J (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787

    Article  CAS  Google Scholar 

  33. Ding J, Wang H, Li Z, Cui K, Karpuzov D, Tan X, Kohandehghan A, Mitlin D (2015) Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors. Energy Environ Sci 8:941–955

    Article  CAS  Google Scholar 

  34. Liu P, Li Y, Hu Y, Li H, Chen L, Huang X (2016) A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries. J Mater Chem A 4:13046–13052

    Article  CAS  Google Scholar 

  35. Zhu Y, Yang L, Zhou X, Li F, Wei J, Zhou Z (2017) Boosting the rate capability of hard carbon with an ether-based electrolyte for sodium ion batteries. J Mater Chem A 5:9528–9532

    Article  CAS  Google Scholar 

  36. Wang S, Xiao C, Xing Y, Xu H, Zhang S (2015) Carbon nanofibers/nanosheets hybrid derived from cornstalks as a sustainable anode for Li-ion batteries. J Mater Chem A 3:6742–6746

    Article  CAS  Google Scholar 

  37. Su L, Hei J, Wu X, Wang L, Wang Y (2015) Highly-dispersed Ni-QDs/mesoporous carbon nanoplates: a universal and commercially applicable approach based on corn straw piths and high capacitive performances. ChemElectroChem 2:1897–1902

    Article  CAS  Google Scholar 

  38. Lotfabad E, Ding J, Cui K, Kohandehghan A, Kalisvaart W, Hazelton M, Mitlin D (2014) High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 8:7115–7129

    Article  CAS  Google Scholar 

  39. Ferrari A, Meyer J, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K, Roth S, Geim A (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401

    Article  CAS  Google Scholar 

  40. Qiu S, Xiao L, Sushko M, Han K, Shao Y, Yan M, Liang X, Mai L, Feng J, Cao Y, Ai X, Yang H, Liu J (2017) Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv Energy Mater. https://doi.org/10.1002/aenm.201700403

  41. Wang P, Zhu X, Wang Q, Xu X, Zhou X, Bao J (2017) Kelp-derived hard carbons as advanced anode materials for sodium-ion batteries. J Mater Chem A 5:5761–5769

    Article  CAS  Google Scholar 

  42. Bommier C, Surta T, Dolgos M, Ji X (2015) New mechanistic insights on Na-ion storage in nongraphitizable carbon. Nano Lett 15:5888–5892

    Article  CAS  Google Scholar 

  43. Fang Y, Xiao L, Ai X, Cao Y, Yang H (2015) Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Adv Mater 27:5895–5900

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC (21421001 and 21773126) in China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinping Wei or Zhen Zhou.

Electronic supplementary material

The online version of this article (https://doi.org/xx) contains supplementary material, which is available to authorized users.

ESM 1

(DOCX 1892 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, YE., Gu, H., Chen, YN. et al. Hard carbon derived from corn straw piths as anode materials for sodium ion batteries. Ionics 24, 1075–1081 (2018). https://doi.org/10.1007/s11581-017-2260-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2260-1

Keywords

Navigation