Skip to main content
Log in

Are binary synapses superior to graded weight representations in stochastic attractor networks?

  • research article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Synaptic plasticity is an underlying mechanism of learning and memory in neural systems, but it is controversial whether synaptic efficacy is modulated in a graded or binary manner. It has been argued that binary synaptic weights would be less susceptible to noise than graded weights, which has impelled some theoretical neuroscientists to shift from the use of graded to binary weights in their models. We compare retrieval performance of models using both binary and graded weight representations through numerical simulations of stochastic attractor networks. We also investigate stochastic attractor models using multiple discrete levels of weight states, and then investigate the optimal threshold for dilution of binary weight representations. Our results show that a binary weight representation is not less susceptible to noise than a graded weight representation in stochastic attractor models, and we find that the load capacities with an increasing number of weight states rapidly reach the load capacity with graded weights. The optimal threshold for dilution of binary weight representations under stochastic conditions occurs when approximately 50% of the smallest weights are set to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abarbanel H, Talathi S, Gibb L, Rabinovich M (2005) Synaptic plasticity with discrete state synapses. Phys Rev E 72:031914

    Article  Google Scholar 

  • Amari S (1972) Learning patterns and pattern sequences by self-organizing nets of threshold elements. IEEE Trans Comput C-21:1197

    Article  Google Scholar 

  • Amit D, Mongillo G (2003) Spike-driven synaptic dynamics generating working memory states. Neural Comput 15:565

    Article  PubMed  Google Scholar 

  • Amit D, Gutfreund H, Sompolinsky H (1985) Storing infinite numbers of patterns in a spin-glass model of neural networks. Phys Rev Lett 55:1530

    Article  PubMed  Google Scholar 

  • Amit D, Gutfreund H., Sompolinsky H (1987) Statistical mechanics of neural networks near saturation. Ann Phys 173:30

    Article  Google Scholar 

  • Baldassi C, Braunstein A, Brunel N, Zecchina R (2007) Efficient supervised learning in networks with binary synapses. Proc Natl Acad Sci 104:11079–11084

    Article  PubMed  CAS  Google Scholar 

  • Braunstein A, Zecchina R (2006) Learning by message passing in networks of discrete synapses. Phys Rev Lett 96:30201

    Article  PubMed  Google Scholar 

  • Brody C, Romo R, Kepecs A (2003) Basic mechanisms for graded persistent activity: discrete attractors, continuous attractors and dynamic representations. Curr Opin Neurobiol 13:204

    Article  PubMed  CAS  Google Scholar 

  • Brunel N, Hakim V, Isope P, Nadal J, Barbour B (2004) Optimal information storage and the distribution of synaptic weights: perceptron versus purkinje cell. Neuron 43:745

    PubMed  CAS  Google Scholar 

  • Chklovskii D, Mel B, Svoboda K (2004) Cortical rewiring and information storage. Nature 431:782

    Article  PubMed  CAS  Google Scholar 

  • Dobrunz L (1998) Long-term potentiation and the computational synapse. Proc Natl Acad Sci USA 95:4086

    Article  PubMed  CAS  Google Scholar 

  • Enoki R, Hu YL, Hamilton D, Fine A (2009) Expression of long-term plasticity at individual synapses in the hippocampus is graded, bidirectional, and mainly presynaptic: optical quantal analysis. Neuron 62:242

    Article  PubMed  CAS  Google Scholar 

  • Fusi S, Abbott L (2007) Limits on the memory storage capacity of bounded synapses. Nat Neurosci 10:485–493

    PubMed  CAS  Google Scholar 

  • Gerstner W (2000) Population dynamics of spiking neurons: fast transients, asynchronous states, and locking. Neural Comput 12:43

    Article  PubMed  CAS  Google Scholar 

  • Giudice PD, Fusi S, Mattia M (2003) Modelling the formation of working memory with networks of integrate-and-fire neurons connected by plastic synapses. J Physiol Paris 97:659

    Article  PubMed  Google Scholar 

  • Graupner M, Brunel N (2007) Stdp in a bistable synapse model based on camkii and associated signaling pathways. PLoS Comput Biol 3:221

    Article  Google Scholar 

  • Grossberg S (1969) On the serial learning of lists. Math Biosci 4:201

    Article  Google Scholar 

  • Gutfreund H, Stein Y (1990) Capacity of neural networks with discrete synaptic couplings. J Phys A 23:2613–2630

    Article  Google Scholar 

  • Gutig R, Aharonov R, Rotter S, Sompolinsky H (2003) Learning input correlations through nonlinear temporally asymmetric hebbian plasticity. J Neurosci 23:3697–3714

    PubMed  CAS  Google Scholar 

  • Hopfield J (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 79:2554

    Article  PubMed  CAS  Google Scholar 

  • Hopfield J (1984) Neurons with graded response have collective computational properties like those of two-state neurons. Proc Natl Acad Sci USA 81:3088

    Article  PubMed  CAS  Google Scholar 

  • Isaac J, Nicoll R, Malenka R (1995) Evidence for silent synapses: implications for the expression of ltp. Neuron 15:427

    Article  PubMed  CAS  Google Scholar 

  • Kepecs A, Rossum MC, van Song S, Tegner J (2002) Spike-timing-dependent plasticity: common themes and divergent vistas. Biol Cybern 87:446–458

    Article  PubMed  Google Scholar 

  • Koulakov A, Raghavachari S, Kepecs A, Lisman J (2002) Model for a robust neural integrator. Nat Neurosci 5:775

    Article  PubMed  CAS  Google Scholar 

  • Krauth W, Mezard M (1989) Storage capacity of memory networks with binary couplings. J Phys France 50:3057–3066

    Article  Google Scholar 

  • Liao D, Hessler N, Mallnow R (1995) Activation of postsynaptically silent synapses during pairing-induced ltp in ca1 region of hippocampal slices. Nature 375:400

    Article  PubMed  CAS  Google Scholar 

  • Martin SJ, Grimwood PD, Morris RGM (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Ann Rev Neurosci 23:649

    Article  PubMed  CAS  Google Scholar 

  • Matsuo N, Reijmers L, Mayford M (2008) Spine-type specific recruitment of newly synthesized ampa receptors with learning. Science 319:1104

    Article  PubMed  CAS  Google Scholar 

  • Morgenstern I (1986) Spin-glasses, optimization and neural networks. In: Hemmen JV, Morgenstern I (eds) The Heidelberg colloquium on glassy dynamics and optimization, Springer-Verlag, Berlin, p 399

  • O’Connor DH, Wittenberg GM, Wang S (2005a) Dissection of bidirectional synaptic plasticity into saturable unidirectional processes. J Neurophysiol 94:1565

    Article  PubMed  Google Scholar 

  • O’Connor DH, Wittenberg GM, Wang S (2005b) Graded bidirectional synaptic plasticity is composed of switch-like unitary events. Proc Natl Acad Sci USA 102:9679

    Article  PubMed  Google Scholar 

  • Peterson CCH, Malenka RC, Nicoll RA, Hopfield JJ (1998) All-or-none potentiation at ca3-ca1 synapses. Proc Natl Acad Sci USA 95:4732

    Article  Google Scholar 

  • Poirazi P, Mel B (2001) Impact of active dendrites and structural plasticity on the memory capacity of neural tissue. Neuron 29:779

    Article  PubMed  CAS  Google Scholar 

  • Rolls E, Tovee M (1995) Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex. J Neurophysiol 73:713

    PubMed  CAS  Google Scholar 

  • Senn W, Fusi S (2004) Slow stochastic learning with global inhibition: a biological solution to the binary perceptron problem. Neurocomputing 58:321

    Article  Google Scholar 

  • Sompolinsky H (1986) Neural networks with nonlinear synapses and static noise. Phys Rev A 34:2571–2574

    Article  PubMed  Google Scholar 

  • Sompolinsky H (1987) The theory of neural networks: the hebb rule and beyond. In: Hemmen JV, Morgenstern I (eds) The Heidelberg colloquium on glassy dynamics and optimization. Springer-Verlag, Berlin, p 485

  • Vladimirski B, Vasilaki E, Fusi S, Senn W (2006) Hebbian reinforcement learning with stochastic binary synapses: theory and application to the xor problem. Preprint from Elsevier Science

  • Willshaw D, Buneman O, Longuet-Higgins H (1969) Nonholographic associative memory. Nature 222:960

    Article  PubMed  CAS  Google Scholar 

  • Wilson H, Cowan J (1973) A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13:55

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Trappenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satel, J., Trappenberg, T. & Fine, A. Are binary synapses superior to graded weight representations in stochastic attractor networks?. Cogn Neurodyn 3, 243–250 (2009). https://doi.org/10.1007/s11571-009-9083-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-009-9083-3

Keywords

Navigation