Skip to main content

Advertisement

Log in

Impact of Awareness Programs on Cholera Dynamics: Two Modeling Approaches

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We propose two differential equation-based models to investigate the impact of awareness programs on cholera dynamics. The first model represents the disease transmission rates as decreasing functions of the number of awareness programs, whereas the second model divides the susceptible individuals into two distinct classes depending on their awareness/unawareness of the risk of infection. We study the essential dynamical properties of each model, using both analytical and numerical approaches. We find that the two models, though closely related, exhibit significantly different dynamical behaviors. Namely, the first model follows regular threshold dynamics while rich dynamical behaviors such as backward bifurcation may arise from the second one. Our results highlight the importance of validating key modeling assumptions in the development and selection of mathematical models toward practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahituv A, Hotz VJ, Philipson T (1996) The responsiveness of the demand for condoms to the local prevalence of AIDS. J Hum Resour 31:869–897

    Article  Google Scholar 

  • Anderson RM, May RM (1991) Infectious diseases of humans: dynamics and control. Oxford University Press, Oxford

    Google Scholar 

  • Andrews JR, Basu S (2011) Transmission dynamics and control of cholera in Haiti: an epidemic model. Lancet 377(9773):1248–1255

    Article  Google Scholar 

  • Capasso V, Paveri-Fontana SL (1979) A mathematical model for the 1973 cholera epidemic in the European Mediterranean region. Rev Epidemiol Sante 27(2):121–132

    Google Scholar 

  • Capasso V, Serio G (1978) A generalization of the Kermack-McKendrick deterministic epidemic model. Math Biosci 42:43–61

    Article  MathSciNet  MATH  Google Scholar 

  • Collinson S, Heffernan JM (2014) Modelling the effects of media during an influenza epidemic. BMC Public Health 14:376

    Article  Google Scholar 

  • Colwell RR (2006) A global and historical perspective of the genus Vibrio. In: Thompson FL, Austin B, Swings J (eds) The biology of vibrios. ASM Press, Washington DC, pp 3–11

  • Cui J, Tao X, Zhu H (2008) An SIS infection model incorporating media coverage. Rocky Mt J Math 38:1323–1334

    Article  MathSciNet  MATH  Google Scholar 

  • Diekmann O, Heesterbeek JAP, Metz JAJ (1990) On the definition and the computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations. J Math Biol 28:365–382

    Article  MathSciNet  MATH  Google Scholar 

  • Einarsdóttir J, Passa A, Gunnlaugsson G (2001) Health education and cholera in rural Guinea-Bissau. Int J Infect Dis 5(3):133–138

    Article  Google Scholar 

  • Ellwein L, Tran H, Zapata C, Novak V, Olufsen M (2008) Sensitivity analysis and model assessment: mathematical models for arterial blood flow and blood pressure. J Cardiovasc Eng 8:94–108

    Article  Google Scholar 

  • Faruque SM, Nair GB (2008) Vibrio cholerae: genomics and molecular biology. Caister Academic Press, Poole

  • Funk S, Gilad E, Janse VAA (2010) Endemic disease, awareness, and local behavioural response. J Theor Biol 264:501–509

    Article  MathSciNet  Google Scholar 

  • Funk S, Salathé M, Jansen VAA (2010) Modelling the influence of human behaviour on the spread of infectious diseases: a review. J R Soc Interface 7(50):1247–1256

    Article  Google Scholar 

  • Funk S, Bansal S, Bauch CT, Eames KTD, Ken WJ, Edmunds AP, Galvani PK (2015) Nine challenges in incorporating the dynamics of behaviour in infectious diseases models. Epidemics 10:21–25

    Article  Google Scholar 

  • Gao D, Ruan S (2011) An SIS patch model with variable transmission coefficients. Math Biosci 232:110–115

    Article  MathSciNet  MATH  Google Scholar 

  • Global Task Force on Cholera Control (2004) Cholera outbreak: assessing the outbreak response and improving preparedness. World Health Organization, Geneva

    Google Scholar 

  • Gumel AB (2012) Causes of backward bifurcations in some epidemiological models. J Math Anal Appl 395(1):355–365

    Article  MathSciNet  MATH  Google Scholar 

  • Hartley DM, Morris JG, Smith DL (2006) Hyperinfectivity: a critical element in the ability of V. cholerae to cause epidemics? PLoS Med 3(1):e7

    Article  Google Scholar 

  • Kaur N, Ghosh M, Bhatia SS (2014) Modeling and analysis of an SIRS epidemic model with effect of awareness programs by media. Int J Math Comput Phys Quant Eng 8:233–239

    Google Scholar 

  • Kiss IZ, Cassell J, Recker M, Simon PL (2010) The impact of information transmission on epidemic outbreaks. Math Biosci 225(1):1–10

    Article  MathSciNet  MATH  Google Scholar 

  • Kitaoka M, Miyata ST, Unterweger D, Pukatzki S (2011) Antibiotic resistance mechanisms of Vibrio cholerae. J Med Microbiol 60(4):397–407

    Article  Google Scholar 

  • LaSalle JP (1976) The stability of dynamical systems. In: Regional conference series in applied mathematics, SIAM, Philadelphia

  • Leung GM, Lam TH, Ho LM, Ho SY, Chan BH, Wong IO, Hedley AJ (2003) The impact of community psychological responses on outbreak control for severe acute respiratory syndrome in Hong Kong. J Epidemiol Community Health 57(11):857–863

    Article  Google Scholar 

  • Liu R, Wu J, Zhu H (2007) Media/psychological impact on multiple outbreaks of emerging infectious diseases. Comput Math Methods Med 8:153–164

    Article  MathSciNet  MATH  Google Scholar 

  • Longini IM, Nizam A, Ali M, Yunus M, Shenvi N, Clemens JD (2007) Controlling endemic cholera with oral vaccines. PLoS Med 4(11):e336

    Article  Google Scholar 

  • Lucas ME, Deen JL, von Seidlein L et al (2005) Effectiveness of mass oral cholera vaccination in Beira. Mozambique. N Engl J Med 352(8):757–767

    Article  Google Scholar 

  • Misra AK, Sharma A, Shukla JB (2011) Modeling and analysis of effects of awareness programs by media on the spread of infectious diseases. Math Comput Model 53:1221–1228

    Article  MathSciNet  MATH  Google Scholar 

  • Mukandavire Z, Liao S, Wang J, Gaff H, Smith DL, Morris JG (2011) Estimating the reproductive numbers for the 2008–2009 cholera outbreaks in Zimbabwe. Proc Nat Acad Sci USA 108:8767–8772

    Article  Google Scholar 

  • Nelson EJ, Harris JB, Morris JG, Calderwood SB, Camilli A (2009) Cholera transmission: the host, pathogen and bacteriophage dynamics. Nat Rev Microbiol 7:693–702

    Article  Google Scholar 

  • Philipson T (1996) Private vaccination and public health: an empirical examination for US measles. J Hum Resour 31:611–630

    Article  Google Scholar 

  • Posny D, Wang J (2014) Modelling cholera in periodic environments. J Biol Dyn 8(1):1–19

    Article  MathSciNet  Google Scholar 

  • Shuai Z, van den Driessche P (2013) Global stability of infectious disease models using Lyapunov functions. SIAM J Appl Math 73(4):1513–1532

    Article  MathSciNet  MATH  Google Scholar 

  • Samanta S, Rana S, Sharma A, Misra AK, Chattopadhyay J (2013) Effect of awareness programs by media on the epidemic outbreaks: a mathematical model. Appl Math Comput 219(12):6965–6977

    MathSciNet  MATH  Google Scholar 

  • Thieme HR (1993) Persistence under relaxed point-dissipativity (with application to an endemic model). SIAM J Math Anal 24:407–435

    Article  MathSciNet  MATH  Google Scholar 

  • Tian JP, Wang J (2011) Global stability for cholera epidemic models. Math Biosci 232(1):31–41

    Article  MathSciNet  MATH  Google Scholar 

  • Tien JH, Earn DJD (2010) Multiple transmission pathways and disease dynamics in a waterborne pathogen model. Bull Math Biol 72(6):1506–1533

    Article  MathSciNet  MATH  Google Scholar 

  • Tracht SM, Del Valle SY, Hyman JM (2010) Mathematical modeling of the effectiveness of facemasks in reducing the spread of novel influenza A (H1N1). PLoS ONE 5(2):e9018

    Article  Google Scholar 

  • van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29–48

    Article  MathSciNet  MATH  Google Scholar 

  • Wang J, Liao S (2012) A generalized cholera model and epidemic-endemic analysis. J Biol Dyn 6(2):568–589

    Article  MathSciNet  Google Scholar 

  • Wang X, Wang J (2015) Analysis of cholera epidemics with bacterial growth and spatial movement. J Biol Dyn 9(1):233–261

    Article  MathSciNet  Google Scholar 

  • Wang X, Gao D, Wang J (2015) Influence of human behavior on cholera dynamics. Math Biosci 267:41–52

    Article  MathSciNet  MATH  Google Scholar 

  • World Health Organization (2009) Public health campaigns: getting the message across. World Health Organization, Geneva

    Google Scholar 

  • Yorke JA, London WP (1973) Recurrent outbreaks of measles, chickenpox and mumps, II. Systematic differences in contact rates and stochastic effects. Am J Epidemiol 98:469–482

    Article  Google Scholar 

  • Zuo L, Liu M (2014) Effect of awareness programs on the epidemic outbreaks with time delay. Abstr Appl Anal 2014:940841

    MathSciNet  Google Scholar 

Download references

Acknowledgements

J.W. is supported in part by NSF (Nos. 1412826 and 1557739). X.W. is partially supported by a Grant from the Simons foundation (No. 317407). D.G. would like to thank the Models of Infectious Disease Agent Study (MIDAS) (NIH NIGMS U01GM087728), the National Natural Science Foundation of China (No. 11601336), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, and Shanghai Gaofeng Project for University Academic Program Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daozhou Gao.

Appendix: Global Stability of the Endemic Equilibrium of Model One

Appendix: Global Stability of the Endemic Equilibrium of Model One

Let \(E^*=(S^*, I^*, R^*, B^*, M^*)\) denote an endemic equilibrium of model (1). To establish the global stability of \(E^*\), we make the following assumptions:

$$\begin{aligned} \left( 1-\dfrac{\beta _1(M)I}{\beta _1(M^*)I^*}\right) \left( 1-\dfrac{M\beta _1(M^*)I^*}{M^*\beta _1(M)I}\right) \ge 0 \end{aligned}$$
(20)

for \(0\le I\le N\) and \(M^0\le M\le M_{\mathrm{max}}\), and

$$\begin{aligned} \left( 1-\dfrac{\beta _2(M)B/(B+K)}{\beta _2(M^*)B^*/(B^*+K)}\right) \left( 1-\dfrac{\beta _2(M^*)/(B^*+K)}{\beta _2(M)/(B+K)}\right) \ge 0 \end{aligned}$$
(21)

for \(M^0\le M\le M_{\mathrm{max}}\) and \(0\le B\le B_{\mathrm{max}}\).

Theorem 4.1

Suppose that (i) assumptions (20) and (21) are satisfied; (ii) \(\xi (M)\equiv \xi \) is constant; (iii) \(\sigma = 0\). If \(\mathcal {R}_0>1\), then system (1) has a unique endemic equilibrium \(E^*\) that is globally asymptotically stable in \(\mathring{\Omega }\).

Proof

For system (1), motivated by Tien and Earn (2010), we consider a Lyapunov function

$$\begin{aligned} \begin{aligned} \mathcal {L}&= c_1 \left( S-S^*-S^*\ln \Big (\dfrac{S}{S^*}\Big )\right) +c_1 \left( I-I^*-I^*\ln \Big (\dfrac{I}{I^*}\Big )\right) \\&\quad + c_2 \left( B-B^*-B^*\ln \Big (\dfrac{B}{B^*}\Big )\right) + c_3 \left( M-M^*-M^*\ln \Big (\dfrac{M}{M^*}\Big )\right) , \end{aligned} \end{aligned}$$

where \(c_i>0\) (\(i=1,2,3\)) are constants to be determined. It is easy to verify that \(\mathcal {L}\ge 0 \) for all \(S, I, B, M>0\), and \(\mathcal {L}=0\) iff \((S, I, B, M)=(S^*,I^*,B^*,M^*)\). Differentiating \(\mathcal {L}\) along solutions of (1) and applying all equations of (4) except the third one, we obtain

$$\begin{aligned} \begin{aligned} \mathcal {L}'&= c_1 \Big (1-\dfrac{S^*}{S}\Big )S'+c_1 \Big (1-\dfrac{I^*}{I}\Big )I'+c_2 \Big (1-\dfrac{B^*}{B}\Big )B'+c_3 \Big (1-\dfrac{M^*}{M}\Big )M'\\&=c_1 \left[ -\mu \, S \Big (1-\dfrac{S^*}{S}\Big )^2\right. \\&\quad \left. +\, \beta _1(M^*)S^*I^*\left( 2-\dfrac{S^*}{S}-\dfrac{I}{I^*}-\dfrac{\beta _1(M)SII^*}{\beta _1(M^*)S^*I^*I}+\dfrac{\beta _1(M)I}{\beta _1(M^*)I^*}\right) \right] \\&\quad +\, c_1\beta _2(M^*)S^*\dfrac{B^*}{B^*+K} \\&\quad \times \,\left( 2-\dfrac{S^*}{S}-\dfrac{I}{I^*}-\dfrac{\beta _2(M)SB/(B+K)I^*}{\beta _2(M^*)S^*B^*/(B^*+K)I}+\dfrac{\beta _2(M)B/(B+K)}{\beta _2(M^*)B^*/(B^*+K)}\right) \\&\quad +\, c_2\xi I^*\left( \dfrac{I}{I^*}-\dfrac{B}{B^*}-\dfrac{B^* I}{B I^*} +1\right) \\&\quad +\,c_3 \left( -\varLambda \dfrac{M}{M^*}\left( 1-\dfrac{M^*}{M}\right) ^2+\eta I^*\left( \dfrac{I}{I^*}-\dfrac{M}{M^*}-\dfrac{M^* I}{M I^*}+1\right) \right) . \end{aligned} \end{aligned}$$
(22)

Notice that \(x-1\ge \ln (x)\) for any \(x>0\), and the equality holds iff \(x=1.\) Together with (20), we find that

$$\begin{aligned}&2-\dfrac{S^*}{S}-\dfrac{I}{I^*}-\dfrac{\beta _1(M)SII^*}{\beta _1(M^*)S^*I^*I}+\dfrac{\beta _1(M)I}{\beta _1(M^*)I^*}\nonumber \\&\quad = -\left( 1-\dfrac{\beta _1(M)I}{\beta _1(M^*)I^*}\right) \left( 1-\dfrac{M\beta _1(M^*)I^*}{M^*\beta _1(M)I}\right) +3-\dfrac{S^*}{S}\nonumber \\&\qquad -\dfrac{\beta _1(M)SII^*}{\beta _1(M^*)S^*I^*I}-\dfrac{M\beta _1(M^*)I^*}{M^*\beta _1(M)I} -\dfrac{I}{I^*}+\dfrac{M}{M^*}\nonumber \\&\quad \le -\left( \dfrac{S^*}{S}-1\right) -\left( \dfrac{\beta _1(M)SII^*}{\beta _1(M^*)S^*I^*I}-1\right) -\left( \dfrac{M\beta _1(M^*)I^*}{M^*\beta _1(M)I}-1\right) -\dfrac{I}{I^*}+\dfrac{M}{M^*}\nonumber \\&\quad = -\ln \Big (\dfrac{S^*}{S}\dfrac{\beta _1(M)SII^*}{\beta _1(M^*)S^*I^*I}\dfrac{M\beta _1(M^*)I^*}{M^*\beta _1(M)I}\Big )-\dfrac{I}{I^*}+\dfrac{M}{M^*}\nonumber \\&\quad = \dfrac{M}{M^*}-\ln \Big (\dfrac{M}{M^*}\Big )-\dfrac{I}{I^*}+\ln \Big (\dfrac{I}{I^*}\Big ). \end{aligned}$$
(23)

Likewise, using (21), we obtain

$$\begin{aligned} \begin{aligned}&2-\dfrac{S^*}{S}-\dfrac{I}{I^*}-\dfrac{\beta _2(M)SB/(B+K)I^*}{\beta _2(M^*)S^*B^*/(B^*+K)I}+\dfrac{\beta _2(M)B/(B+K)}{\beta _2(M^*)B^*/(B^*+K)}\\&\quad \le \dfrac{B}{B^*}-\ln \Big (\dfrac{B}{B^*}\Big )-\dfrac{I}{I^*}+\ln \Big (\dfrac{I}{I^*}\Big ). \end{aligned} \end{aligned}$$
(24)

Meanwhile, one can verify that

$$\begin{aligned}&\dfrac{I}{I^*}-\dfrac{B}{B^*}-\dfrac{B^* I}{B I^*}+1 =-\left( \dfrac{B^* I}{B I^*}-1\right) +\dfrac{I}{I^*}-\dfrac{B}{B^*}\nonumber \\&\quad \le -\ln \left( \dfrac{B^* I}{B I^*}\right) +\dfrac{I}{I^*}-\dfrac{B}{B^*} =\dfrac{I}{I^*}-\ln \Big (\dfrac{I}{I^*}\Big )-\dfrac{B}{B^*}+\ln \Big (\dfrac{B}{B^*}\Big ). \end{aligned}$$
(25)

Similarly, we have

$$\begin{aligned} \dfrac{I}{I^*}-\dfrac{M}{M^*}-\dfrac{M^* I}{M I^*}+1\le \dfrac{I}{I^*}-\ln \Big (\dfrac{I}{I^*}\Big )-\dfrac{M}{M^*}+\ln \Big (\dfrac{M}{M^*}\Big ). \end{aligned}$$
(26)

It follows from (23)–(26) that the Eq. (22) yields

$$\begin{aligned} \mathcal {L}'&\le c_1 \beta _1(M^*)S^*I^*\left( \dfrac{M}{M^*}-\ln \Big (\dfrac{M}{M^*}\Big )-\dfrac{I}{I^*}+\ln \Big (\dfrac{I}{I^*}\Big )\right) \nonumber \\&\quad +c_1 \beta _2(M^*)S^*\dfrac{B^*}{B^*+K}\left( \dfrac{B}{B^*}-\ln \Big (\dfrac{B}{B^*}\Big )-\dfrac{I}{I^*}+\ln \Big (\dfrac{I}{I^*}\Big )\right) \nonumber \\&\quad +c_2 \xi I^* \left( \dfrac{I}{I^*}-\ln \Big (\dfrac{I}{I^*}\Big )-\dfrac{B}{B^*}+\ln \Big (\dfrac{B}{B^*}\Big )\right) \nonumber \\&\quad +c_3 \eta I^* \left( \dfrac{I}{I^*}-\ln \Big (\dfrac{I}{I^*}\Big )-\dfrac{M}{M^*}+\ln \Big (\dfrac{M}{M^*}\Big )\right) . \end{aligned}$$
(27)

Take \(c_1= \xi \eta I^*\), \(c_2 = \eta \beta _2(M^*)S^*B^*/(B^*+K)\) and \(c_3=\xi \beta _1(M^*)S^*I^*\). One can verify by direct calculation that the right-hand side of the inequality (27) is zero. This shows \(\mathcal {L}'\le 0\) with the chosen positive constants \(c_1, c_2\), and \(c_3.\) Moreover, if \(\mathcal {L}'=0\), then there exists a constant \(\hat{k}\) such that

$$\begin{aligned} S=S^*,\,\,\, I= \hat{k} I^*,\,\, \,B= \hat{k} B^*,\,\,\, M= \hat{k} M^*. \end{aligned}$$
(28)

However, by the last equation of (4), \(0=\varLambda + \eta \hat{k} I^*-\nu \hat{k}M^*\). This implies that \(\hat{k}=1\). Meanwhile, \(R=R^*\) which follows from the third equation of (4). Thus, the largest invariant set for which \(\mathcal {L}'=0\) contains only the EE. Therefore, by LaSalle’s invariant principle (LaSalle 1976), the EE is globally asymptotically stable in \(\mathring{\Omega }\) when \(\mathcal {R}_0>1\).

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Wang, X., Gao, D. et al. Impact of Awareness Programs on Cholera Dynamics: Two Modeling Approaches. Bull Math Biol 79, 2109–2131 (2017). https://doi.org/10.1007/s11538-017-0322-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-017-0322-1

Keywords

Navigation