Skip to main content

Advertisement

Log in

Identifying Mechanisms of Homeostatic Signaling in Fibroblast Differentiation

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Fibroblasts play an important role in the wound-healing process by generating extracellular matrix (ECM) and undergoing differentiation into myofibroblasts, but these cells can also be involved in pathologic remodeling of tissue. Nascent ECM provides a substrate for re-epithelialization to occur, restoring damaged tissue to a functional state. Dysregulation of this process can result in fibrosis—stiffening and scarring of the tissue. Current treatments cannot halt or reverse this process. The molecular mechanisms underlying fibrotic dysregulation are poorly understood, providing an untapped pool of potential therapeutic targets. Transforming growth factor-\(\upbeta \) (\(\hbox {TGF-}\upbeta )\) and adhesion signaling are involved in inducing fibroblast differentiation into \(\upalpha \)-smooth muscle actin (\(\upalpha \hbox {SMA}\)) expressing myofibroblasts, while prostaglandin \(\hbox {E}_{2}\) (\(\hbox {PGE}_{2})\) has been shown to antagonize \(\hbox {TGF}\upbeta \) signaling; however, the temporal and mechanistic details of this relationship have not yet been fully characterized. We measured \(\upalpha \hbox {SMA}\), a marker of fibroblast to myofibroblast differentiation, as a function of: \(\hbox {TGF-}{\upbeta }1\) receptor–ligand complex internalization, \(\hbox {PGE}_{2}\) binding, and adhesion signaling and developed a mathematical model capturing the molecular mechanisms of fibroblast differentiation. Using our model, we predict the following: Periodic dosing with \(\hbox {PGE}_{2}\) temporarily renders fibroblasts incapable of differentiation and refractory to additional \(\hbox {TGF-}{\upbeta }1\) stimulation; conversely, periodic dosing with \(\hbox {TGF-}{\upbeta }1\) in the presence of \(\hbox {PGE}_{2}\) induces a reduced signal response that can be further inhibited by the addition of more \(\hbox {PGE}_{2}\). Controlled fibroblast differentiation is necessary for effective wound healing; however, excessive accumulation of \(\upalpha \hbox {SMA}\)-expressing myofibroblasts can result in fibrosis. Homeostasis of \(\upalpha \hbox {SMA}\) in our model requires a balance of positive and negative regulatory signals. Sensitivity analysis predicts that \(\hbox {PGE}_{2}\) availability, \(\hbox {TGF-}{\upbeta }1\) availability, and the rate of \(\hbox {TGF-}{\upbeta }1\) receptor recycling each highly influence the rates of \(\upalpha \hbox {SMA}\) production. With this model, we are able to demonstrate that regulation of both \(\hbox {TGF-}{\upbeta }1\) and \(\hbox {PGE}_{2}\) signaling levels is essential for preventing fibroblast dysregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Annes JP, Munger JS, Rifkin DB (2003) Making sense of latent TGFbeta activation. J Cell Sci 116(Pt 2):217–224

    Article  Google Scholar 

  • Bendelac A, Rivera MN, Park SH, Roark JH (1997) Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu Rev Immunol 15:535–562

    Article  Google Scholar 

  • Bettinger DA, Yager DR, Diegelmann RF, Cohen IK (1996) The effect of TGF-beta on keloid fibroblast proliferation and collagen synthesis. Plast Reconstr Surg 98(5):827–833

    Article  Google Scholar 

  • Broekelmann TJ, Limper AH, Colby TV, McDonald JA (1991) Transforming growth factor beta 1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis. Proc Natl Acad Sci USA 88(15):6642–6646

    Article  Google Scholar 

  • Camelo A, Dunmore R, Sleeman MA, Clarke DL (2014) The epithelium in idiopathic pulmonary fibrosis: breaking the barrier. Front Pharmacol 4:173

    Article  Google Scholar 

  • Coffey RJ Jr, Bascom CC, Sipes NJ, Graves-Deal R, Weissman BE, Moses HL (1988) Selective inhibition of growth-related gene expression in murine keratinocytes by transforming growth factor beta. Mol Cell Biol 8(8):3088–3093

    Article  Google Scholar 

  • Coomes SM, Wilke CA, Moore TA, Moore BB (2010) Induction of TGF-beta 1, not regulatory T cells, impairs antiviral immunity in the lung following bone marrow transplant. J Immunol 184(9):5130–5140

    Article  Google Scholar 

  • Coomes SM, Farmen S, Wilke CA, Laouar Y, Moore BB (2011) Severe gammaherpesvirus-induced pneumonitis and fibrosis in syngeneic bone marrow transplant mice is related to effects of transforming growth factor-beta. Am J Pathol 179(5):2382–2396

    Article  Google Scholar 

  • De Crescenzo G, Pham PL, Durocher Y, O’Connor-McCourt MD (2003) Transforming growth factor-\(\beta \) (TGF-\(\beta \)) binding to the extracellular domain of the type II TGF-\(\beta \) receptor: receptor capture on a biosensor surface using a new coiled-coil capture system demonstrates that avidity contributes significantly to high affinity binding. J Mol Biol 328(5):1173–1183

    Article  Google Scholar 

  • de Ulrich TA, Juan Pardo EM, Kumar S (2009) The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res 69(10):4167–4174

    Article  Google Scholar 

  • Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425(6958):577–584

    Article  Google Scholar 

  • Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G (1993) Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 122(1):103–111

    Article  Google Scholar 

  • Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL (2003) Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nat Cell Biol 5(5):410–421

    Article  Google Scholar 

  • Diegelmann RF, Evans MC (2004) Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 9:283–289

    Article  Google Scholar 

  • Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143

    Article  Google Scholar 

  • Fine A, Poliks CF, Donahue LP, Smith BD, Goldstein RH (1989) The differential effect of prostaglandin E2 on transforming growth factor-beta and insulin-induced collagen formation in lung fibroblasts. J Biol Chem 264(29):16988–16991

    Google Scholar 

  • Fine A, Goldstein RH (1987) The effect of transforming growth factor-beta on cell proliferation and collagen formation by lung fibroblasts. J Biol Chem 262(8):3897–3902

    Google Scholar 

  • Finnson KW, McLean S, Di Guglielmo GM, Philip A (2013) Dynamics of transforming growth factor beta signaling in wound healing and scarring. Adv Wound Care (New Rochelle) 2(5):195–214

    Article  Google Scholar 

  • Giannone G, Sheetz MP (2006) Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways. Trends Cell Biol 16(4):213–223

    Article  Google Scholar 

  • Goldman R (2004) Growth factors and chronic wound healing: past, present, and future. Adv Skin Wound Care 17(1):24–35

    Article  Google Scholar 

  • Guo S, Dipietro LA (2010) Factors affecting wound healing. J Dent Res 89(3):219–229

    Article  Google Scholar 

  • Hinz B, Celetta G, Tomasek JJ, Gabbiani G, Chaponnier C (2001) Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol Biol Cell 12(9):2730–2741

    Article  Google Scholar 

  • Horiguchi M, Ota M, Rifkin DB (2012) Matrix control of transforming growth factor-beta function. J Biochem 152(4):321–329

    Article  Google Scholar 

  • Huang SK, White ES, Wettlaufer SH, Grifka H, Hogaboam CM, Thannickal VJ et al (2009) Prostaglandin E(2) induces fibroblast apoptosis by modulating multiple survival pathways. FASEB J 23(12):4317–4326

    Article  Google Scholar 

  • Huang X, Yang N, Fiore VF, Barker TH, Sun Y, Morris SW et al (2012) Matrix stiffness-induced myofibroblast differentiation is mediated by intrinsic mechanotransduction. Am J Respir Cell Mol Biol 47(3):340–348

    Article  Google Scholar 

  • Ishihara O, Sullivan MH, Elder MG (1991) Differences of metabolism of prostaglandin E2 and F2 alpha by decidual stromal cells and macrophages in culture. Eicosanoids 4(4):203–207

    Google Scholar 

  • Kalter VG, Brody AR (1991) Receptors for transforming growth factor-beta (TGF-beta) on rat lung fibroblasts have higher affinity for TGF-beta 1 than for TGF-beta 2. Am J Respir Cell Mol Biol (USA) 4(5):397–407

    Article  Google Scholar 

  • King TE Jr, Bradford WZ, Castro-Bernardini S, Fagan EA, Glaspole I, Glassberg MK et al (2014) A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med 370(22):2083–2092

    Article  Google Scholar 

  • Kolodsick JE, Peters-Golden M, Larios J, Toews GB, Thannickal VJ, Moore BB (2003) Prostaglandin E2 inhibits fibroblast to myofibroblast transition via E. prostanoid receptor 2 signaling and cyclic adenosine monophosphate elevation. Am J Respir Cell Mol Biol 29(5):537–544

    Article  Google Scholar 

  • Kronenberg M, Rudensky A (2005) Regulation of immunity by self-reactive T cells. Nature 435(7042):598–604

    Article  Google Scholar 

  • Lama V, Moore BB, Christensen P, Toews GB, Peters-Golden M (2002) Prostaglandin E2 synthesis and suppression of fibroblast proliferation by alveolar epithelial cells is cyclooxygenase-2-dependent. Am J Respir Cell Mol Biol 27(6):752–758

    Article  Google Scholar 

  • Lauffenburger DA, Linderman JJ (1993) Receptors: models for binding, trafficking, and signaling. Oxford University Press, New York

    Google Scholar 

  • Leveen P, Carlsen M, Makowska A, Oddsson S, Larsson J, Goumans MJ et al (2005) TGF-beta type II receptor-deficient thymocytes develop normally but demonstrate increased CD8+ proliferation in vivo. Blood 106(13):4234–4240

    Article  Google Scholar 

  • Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT et al (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5):891–906

    Article  Google Scholar 

  • Ley B, Collard HR, King TE Jr (2011) Clinical course and prediction of survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 183(4):431–440

    Article  Google Scholar 

  • Li MO, Wan YY, Flavell RA (2007) T cell-produced transforming growth factor-beta1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity 26(5):579–591

    Article  Google Scholar 

  • Lilja-Maula L, Syrja P, Laurila HP, Sutinen E, Ronty M, Koli K et al (2014) Comparative study of transforming growth factor-beta signalling and regulatory molecules in human and canine idiopathic pulmonary fibrosis. J Comp Pathol 150(4):399–407

    Article  Google Scholar 

  • Lin LL, Lin AY, DeWitt DL (1992) Interleukin-1 alpha induces the accumulation of cytosolic phospholipase A2 and the release of prostaglandin E2 in human fibroblasts. J Biol Chem 267(33):23451–23454

    Google Scholar 

  • Liston A, Rudensky AY (2007) Thymic development and peripheral homeostasis of regulatory T cells. Curr Opin Immunol 19(2):176–185

    Article  Google Scholar 

  • Liu Y, Zhang P, Li J, Kulkarni AB, Perruche S, Chen W (2008) A critical function for TGF-beta signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells. Nat Immunol 9(6):632–640

    Article  Google Scholar 

  • Liu F, Mih JD, Shea BS, Kho AT, Sharif AS, Tager AM et al (2010) Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J Cell Biol 190(4):693–706

    Article  Google Scholar 

  • Marie JC, Liggitt D, Rudensky AY (2006) Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-beta receptor. Immunity 25(3):441–454

    Article  Google Scholar 

  • Marino S, Hogue IB, Ray CJ, Kirschner DE (2008) A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol 254(1):178–196

    Article  MathSciNet  Google Scholar 

  • Moore BB, Peters-Golden M, Christensen PJ, Lama V, Kuziel WA, Paine R 3rd et al (2003) Alveolar epithelial cell inhibition of fibroblast proliferation is regulated by MCP-1/CCR2 and mediated by PGE2. Am J Physiol Lung Cell Mol Physiol 284(2):L342–L349

    Article  Google Scholar 

  • Moore BB, Ballinger MN, White ES, Green ME, Herrygers AB, Wilke CA et al (2005) Bleomycin-induced E prostanoid receptor changes alter fibroblast responses to prostaglandin E2. J Immunol 174(9):5644–5649

    Article  Google Scholar 

  • Penheiter SG, Mitchell H, Garamszegi N, Edens M, Dore JJ Jr, Leof EB (2002) Internalization-dependent and -independent requirements for transforming growth factor beta receptor signaling via the Smad pathway. Mol Cell Biol 22(13):4750–4759

    Article  Google Scholar 

  • Peyton SR, Kim PD, Ghajar CM, Seliktar D, Putnam AJ (2008) The effects of matrix stiffness and RhoA on the phenotypic plasticity of smooth muscle cells in a 3-D biosynthetic hydrogel system. Biomaterials 29(17):2597–2607

    Article  Google Scholar 

  • Pietenpol JA, Stein RW, Moran E, Yaciuk P, Schlegel R, Lyons RM et al (1990) TGF-beta 1 inhibition of c-myc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRB binding domains. Cell 61(5):777–785

    Article  Google Scholar 

  • Ramasastry SS (2005) Acute wounds. Clin Plast Surg 32(2):195–208

    Article  Google Scholar 

  • Richeldi L, du Bois RM, Raghu G, Azuma A, Brown KK, Costabel U et al (2014) Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med 370(22):2071–2082

    Article  Google Scholar 

  • Rider CC, Mulloy B (2010) Bone morphogenetic protein and growth differentiation factor cytokine families and their protein antagonists. Biochem J 429(1):1–12

    Article  Google Scholar 

  • Saltzman LE, Moss J, Berg RA, Hom B, Crystal RG (1982) Modulation of collagen production by fibroblasts. Effects of chronic exposure to agonists that increase intracellular cyclic AMP. Biochem J 204(1):25–30

    Article  Google Scholar 

  • Sawada Y, Tamada M, Dubin-Thaler BJ, Cherniavskaya O, Sakai R, Tanaka S et al (2006) Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127(5):1015–1026

    Article  Google Scholar 

  • Strieter RM (2008) What differentiates normal lung repair and fibrosis? Inflammation, resolution of repair, and fibrosis. Proc Am Thorac Soc 5(3):305–310

    Article  Google Scholar 

  • Sugimoto Y, Narumiya S (2007) Prostaglandin E receptors. J Biol Chem 282(16):11613–11617

    Article  Google Scholar 

  • Tamada M, Sheetz MP, Sawada Y (2004) Activation of a signaling cascade by cytoskeleton stretch. Dev Cell 7(5):709–718

    Article  Google Scholar 

  • Taniguchi H, Kondoh Y, Ebina M, Azuma A, Ogura T, Taguchi Y et al (2011) The clinical significance of 5% change in vital capacity in patients with idiopathic pulmonary fibrosis: extended analysis of the pirfenidone trial. Respir Res 12:93

    Article  Google Scholar 

  • Thannickal VJ, Lee DY, White ES, Cui Z, Larios JM, Chacon R et al (2003) Myofibroblast differentiation by transforming growth factor-beta1 is dependent on cell adhesion and integrin signaling via focal adhesion kinase. J Biol Chem 278(14):12384–12389

    Article  Google Scholar 

  • Thomas PE, Peters-Golden M, White ES, Thannickal VJ, Moore BB (2007) PGE(2) inhibition of TGF-beta1-induced myofibroblast differentiation is Smad-independent but involves cell shape and adhesion-dependent signaling. Am J Physiol Lung Cell Mol Physiol 293(2):L417–L428

    Article  Google Scholar 

  • Tian M, Schiemann WP (2010) PGE2 receptor EP2 mediates the antagonistic effect of COX-2 on TGF-beta signaling during mammary tumorigenesis. FASEB J 24(4):1105–1116

    Article  Google Scholar 

  • Tomioka H, Imanaka K, Hashimoto K, Iwasaki H (2007) Health-related quality of life in patients with idiopathic pulmonary fibrosis-cross-sectional and longitudinal study. Intern Med 46(18):1533–1542

    Article  Google Scholar 

  • Velnar T, Bailey T, Smrkolj V (2009) The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res 37(5):1528–1542

    Article  Google Scholar 

  • Vilar JM, Jansen R, Sander C (2006) Signal processing in the TGF-beta superfamily ligand-receptor network. PLoS Comput Biol 2(1):e3

    Article  Google Scholar 

  • Vizan P, Miller DSJ, Gori I, Das D, Schmierer B, Hill CS (2013) Controlling long-term signaling: receptor dynamics determine attenuation and refractory behavior of the TGF-beta pathway. Sci Signal 6(305):ra106

    Article  Google Scholar 

  • Wakefield LM, Winokur TS, Hollands RS, Christopherson K, Levinson AD, Sporn MB (1990) Recombinant latent transforming growth factor beta 1 has a longer plasma half-life in rats than active transforming growth factor beta 1, and a different tissue distribution. J Clin Invest 86(6):1976–1984

    Article  Google Scholar 

  • Xaubet A, Serrano-Mollar A, Ancochea J (2014) Pirfenidone for the treatment of idiopathic pulmonary fibrosis. Expert Opin Pharmacother 15(2):275–281

    Article  Google Scholar 

  • Zi Z, Feng Z, Chapnick DA, Dahl M, Deng D, Klipp E et al (2011) Quantitative analysis of transient and sustained transforming growth factor-beta signaling dynamics. Mol Syst Biol 7:492

    Article  Google Scholar 

  • Zi Z, Klipp E (2007) Constraint-based modeling and kinetic analysis of the Smad dependent TGF-beta signaling pathway. PLoS ONE 2(9):e936

    Article  Google Scholar 

  • Zimmermann CS, Carvalho CR, Silveira KR, Yamaguti WP, Moderno EV, Salge JM et al (2007) Comparison of two questionnaires which measure the health-related quality of life of idiopathic pulmonary fibrosis patients. Braz J Med Biol Res 40(2):179–187

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the following Grants: R01 EB012579, R01 HL 110811 (both awarded to D.E.K. and J.J.L.), and R01 HL 115618 (awarded to B.B.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise E. Kirschner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warsinske, H.C., Ashley, S.L., Linderman, J.J. et al. Identifying Mechanisms of Homeostatic Signaling in Fibroblast Differentiation. Bull Math Biol 77, 1556–1582 (2015). https://doi.org/10.1007/s11538-015-0096-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-015-0096-2

Keywords

Navigation