Skip to main content
Log in

Travelling Waves in Hybrid Chemotaxis Models

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Hybrid models of chemotaxis combine agent-based models of cells with partial differential equation models of extracellular chemical signals. In this paper, travelling wave properties of hybrid models of bacterial chemotaxis are investigated. Bacteria are modelled using an agent-based (individual-based) approach with internal dynamics describing signal transduction. In addition to the chemotactic behaviour of the bacteria, the individual-based model also includes cell proliferation and death. Cells consume the extracellular nutrient field (chemoattractant), which is modelled using a partial differential equation. Mesoscopic and macroscopic equations representing the behaviour of the hybrid model are derived and the existence of travelling wave solutions for these models is established. It is shown that cell proliferation is necessary for the existence of non-transient (stationary) travelling waves in hybrid models. Additionally, a numerical comparison between the wave speeds of the continuum models and the hybrid models shows good agreement in the case of weak chemotaxis and qualitative agreement for the strong chemotaxis case. In the case of slow cell adaptation, we detect oscillating behaviour of the wave, which cannot be explained by mean-field approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adler, J. (1966). Chemotaxis in bacteria. Science, 153, 708–716.

    Article  Google Scholar 

  • Berg, H. (1983). Random walks in biology. Princeton: Princeton University Press.

    Google Scholar 

  • Berg, H. (1975). How bacteria swim. Sci. Am., 233, 36–44.

    Article  Google Scholar 

  • Berg, H., & Brown, D. (1972). Chemotaxis in Esterichia coli analysed by three-dimensional tracking. Nature, 239, 500–504.

    Article  Google Scholar 

  • Bourret, R., Borkovich, K., & Simon, M. (1991). Signal transduction pathways involving protein phosphorylation in prokaryotes. Annu. Rev. Biochem., 60, 401–441.

    Article  Google Scholar 

  • Brenner, M., Levitov, L., & Budrene, E. (1998). Physical mechanisms for chemotactic pattern formation by bacteria. Biophys. J., 74(4), 1677–1693.

    Article  Google Scholar 

  • Budrene, E., & Berg, H. (1991). Complex patterns formed by motile cells of Esterichia coli. Nature, 349, 630–633.

    Article  Google Scholar 

  • Budrene, E., & Berg, H. (1995). Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature, 376, 49–53.

    Article  Google Scholar 

  • Cercignani, C., Illner, R., & Pulvirenti, M. (1994). The mathematical theory of dilute gases. Applied mathematical sciences: Vol. 106. Berlin: Springer.

    MATH  Google Scholar 

  • Chavanis, P. (2010). A stochastic Keller-Segel model of chemotaxis. Commun. Nonlinear Sci. Numer. Simul., 15, 60–70.

    Article  MathSciNet  MATH  Google Scholar 

  • Erban, R. (2005). From individual to collective behaviour in biological systems. Ph.D. Thesis, University of Minnesota.

  • Erban, R., & Haskovec, J. (2012). From individual to collective behaviour of coupled velocity jump processes: a locust example. Kinet. Relat. Models, 5(4), 817–842.

    Article  MathSciNet  MATH  Google Scholar 

  • Erban, R., & Othmer, H. (2004). From individual to collective behaviour in bacterial chemotaxis. SIAM J. Appl. Math., 65(2), 361–391.

    Article  MathSciNet  MATH  Google Scholar 

  • Erban, R., & Othmer, H. (2005). From signal transduction to spatial pattern formation in E. coli: a paradigm for multi-scale modeling in biology. Multiscale Model. Simul., 3(2), 362–394.

    Article  MathSciNet  MATH  Google Scholar 

  • Fisher, R. (1937). The wave of advance of advantageous genes. Ann. Eugen., 7, 355–369.

    Article  MATH  Google Scholar 

  • Franz, B., & Erban, R. (2013). Hybrid modelling of individual movement and collective behaviour. In M. Lewis, P. Maini, & S. Petrovskii (Eds.), Dispersal, individual movement and spatial ecology: a mathematical perspective. Berlin: Springer.

    Google Scholar 

  • Gerisch, A., & Painter, K. (2010). Mathematical modelling of cell adhesion and its applications to developmental biology and cancer invasion. In A. Chauviere & L. Preziosi (Eds.), Cell mechanics: from single scale-based models to multiscale modeling (pp. 319–350). Boca Raton: CRC Press. Chapter 12.

    Chapter  Google Scholar 

  • Guo, Z., Sloot, P., & Tay, J. (2008). A hybrid agent-based approach for modeling microbiological systems. J. Theor. Biol., 255, 163–175.

    Article  MathSciNet  Google Scholar 

  • Hillen, T., & Painter, K. (2009). A user’s guide to PDE models for chemotaxis. J. Math. Biol., 58, 183–217.

    Article  MathSciNet  MATH  Google Scholar 

  • Horstmann, D. (2004). From 1970 until present: the Keller-Segel model in chemotaxis and its consequences II. Jahresber. Dtsch. Math.-Ver., 106, 51–69.

    MathSciNet  MATH  Google Scholar 

  • Keller, E., & Segel, L. (1971). Traveling bands of chemotactic bacteria: a theoretical analysis. J. Theor. Biol., 30, 235–248.

    Article  MATH  Google Scholar 

  • Kennedy, C., & Aris, R. (1980). Traveling waves in a simple population model involving growth and death. Bull. Math. Biol., 42, 397–429.

    Article  MathSciNet  MATH  Google Scholar 

  • Landman, K., Petter, G., & Newgreen, D. (2003). Chemotactic cellular migration: smooth and discontinuous travelling wave solutions. SIAM J. Appl. Math., 63(5), 1666–1681.

    Article  MathSciNet  MATH  Google Scholar 

  • Landman, K., Simpson, M., Slater, J., & Newgreen, D. (2005). Diffusive and chemotactic cellular migration: smooth and discontinuous travelling wave solutions. SIAM J. Appl. Math., 65, 1420–1442.

    Article  MathSciNet  MATH  Google Scholar 

  • Landman, K. A., Simpson, M. J., & Newgreen, D. F. (2007). Mathematical and experimental insights into the development of the enteric nervous system and hirschsprung’s disease. Dev. Growth Differ., 49, 277–286.

    Article  Google Scholar 

  • Li, T., & Wang, Z. (2011). Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis. J. Differ. Equ., 250, 1310–1333.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, T., & Wang, Z. (2012). Steadily propagating waves of a chemotaxis model. Math. Biosci., 240, 161–168.

    Article  MathSciNet  MATH  Google Scholar 

  • Lui, R., & Wang, Z. (2010). Traveling wave solutions from microscopic to macroscopic chemotaxis models. J. Math. Biol., 61, 739–761.

    Article  MathSciNet  MATH  Google Scholar 

  • Metcalf, M., Merkin, J., & Scott, S. (1994). Oscillating wave fronts in isothermal chemical systems with arbitrary powers of autocatalysis. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 447, 155–174.

    Article  MathSciNet  MATH  Google Scholar 

  • Murray, J. (2002). Mathematical biology. Berlin: Springer.

    MATH  Google Scholar 

  • Nadin, G., Perthame, B., & Ryzhik, L. (2008). Traveling waves for the Keller-Segel system with Fisher birth term. Interfaces Free Bound., 10, 517–538.

    Article  MathSciNet  MATH  Google Scholar 

  • Othmer, H., Dunbar, S., & Alt, W. (1988). Models of dispersal in biological systems. J. Math. Biol., 26, 263–298.

    Article  MathSciNet  MATH  Google Scholar 

  • Othmer, H., & Schaap, P. (1998). Oscillatory cAMP signaling in the development of Dictyostelium discoideum. Comments Theor. Biol., 5, 175–282.

    Google Scholar 

  • Reitz, R. D. (1981). A study of numerical methods for reaction-diffusion equations. SIAM J. Sci. Stat. Comput., 2, 95–106.

    Article  MathSciNet  MATH  Google Scholar 

  • Saragosti, J., Calvez, V., Bournaveas, N., Buguin, A., Silberzan, P., & Perthame, B. (2010). Mathematical description of bacterial traveling pulses. PLoS Comput. Biol., 6, e1000890.

    Article  MathSciNet  Google Scholar 

  • Saragosti, J., Calvez, V., Bournaveas, N., Perthame, B., Buguin, A., & Silberzan, P. (2011). Directional persistence of chemotactic bacteria in a traveling concentration wave. Proc. Natl. Acad. Sci. USA, 108(39), 16235–16240.

    Article  Google Scholar 

  • Satnoianu, R., Maini, P., Garduno, F., & Armitage, J. (2001). Travelling waves in a nonlinear degenerate diffusion model for bacterial pattern formation. Discrete Contin. Dyn. Syst., Ser. B, 1, 339–362.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, Z. A. (2013). Mathematics of traveling waves in chemotaxis—review paper. Discrete Contin. Dyn. Syst., Ser. B, 13, 601–641.

    MathSciNet  MATH  Google Scholar 

  • Witte, M. B., & Barbul, A. (1997). General principles of wound healing. Surg. Clin. North Am., 77, 509–528.

    Article  Google Scholar 

  • Xue, C., Budrene, E., & Othmer, H. (2011a). Radial and spiral streams in proteus mirabilis colonies. PLoS Comput. Biol., 7(12), e1002332.

    Article  Google Scholar 

  • Xue, C., Hwang, H., Painter, K., & Erban, R. (2011b). Travelling waves in hyperbolic chemotaxis equations. Bull. Math. Biol., 73(8), 1695–1733.

    Article  MathSciNet  MATH  Google Scholar 

  • Xue, C., & Othmer, H. (2009). Multiscale models of taxis-driven patterning in bacterial populations. SIAM J. Appl. Math., 70(1), 133–167.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 239870. This publication was based on work supported in part by Award No KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST). Radek Erban would also like to thank the Royal Society for a University Research Fellowship; Brasenose College, University of Oxford, for a Nicholas Kurti Junior Fellowship, and the Leverhulme Trust for a Philip Leverhulme Prize. This prize money was used to support research visits of Chuan Xue and Kevin Painter in Oxford. Kevin Painter acknowledges a Leverhulme Trust Research Fellowship award (RF-2011-045). Chuan Xue is supported by the National Science Foundation in the United States through grant DMS-1312966 and the Mathematical Biosciences Institute at the Ohio State University as a long-term visitor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radek Erban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franz, B., Xue, C., Painter, K.J. et al. Travelling Waves in Hybrid Chemotaxis Models. Bull Math Biol 76, 377–400 (2014). https://doi.org/10.1007/s11538-013-9924-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9924-4

Keywords

Navigation