Skip to main content
Log in

The Role of Dimerisation and Nuclear Transport in the Hes1 Gene Regulatory Network

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Hes1 is a member of the family of basic helix-loop-helix transcription factors and the Hes1 gene regulatory network (GRN) may be described as the canonical example of transcriptional control in eukaryotic cells, since it involves only the Hes1 protein and its own mRNA. Recently, the Hes1 protein has been established as an excellent target for an anti-cancer drug treatment, with the design of a small molecule Hes1 dimerisation inhibitor representing a promising if challenging approach to therapy.

In this paper, we extend a previous spatial stochastic model of the Hes1 GRN to include nuclear transport and dimerisation of Hes1 monomers. Initially, we assume that dimerisation occurs only in the cytoplasm, with only dimers being imported into the nucleus. Stochastic simulations of this novel model using the URDME software show that oscillatory dynamics in agreement with experimental studies are retained. Furthermore, we find that our model is robust to changes in the nuclear transport and dimerisation parameters. However, since the precise dynamics of the nuclear import of Hes1 and the localisation of the dimerisation reaction are not known, we consider a second modelling scenario in which we allow for both Hes1 monomers and dimers to be imported into the nucleus, and we allow dimerisation of Hes1 to occur everywhere in the cell. Once again, computational solutions of this second model produce oscillatory dynamics in agreement with experimental studies. We also explore sensitivity of the numerical solutions to nuclear transport and dimerisation parameters. Finally, we compare and contrast the two different modelling scenarios using numerical experiments that simulate dimer disruption, and suggest a biological experiment that could distinguish which model more faithfully captures the Hes1 GRN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Agrawal, S., Archer, C., & Schaffer, D. V. (2009). Computational models of the notch network elucidate mechanisms of context-dependent signaling. PLoS Comput. Biol., 5, e1000390.

    Article  Google Scholar 

  • Arai, M. A., Masada, A., Ohtsuka, T., Kageyama, R., & Ishibashi, M. (2009). The first hes1 dimer inhibitors from natural products. Bioorg. Med. Chem. Lett., 19, 5778–5781.

    Article  Google Scholar 

  • Aranda, A., & Pascual, A. (2001). Nuclear hormone receptors and gene expression. Physiol. Rev., 81, 1269–1304.

    Google Scholar 

  • Banerjee, H. N., Gibbs, J., Jordan, T., & Blakshear, M. (2010). Depletion of a single nucleoporin, Nup107, induces apoptosis in eukaryotic cells. Mol. Cell. Biochem., 343, 21–25.

    Article  Google Scholar 

  • Barik, D., Paul, M. R., Baumann, W. T., Cao, Y., & Tyson, J. J. (2008). Stochastic simulation of enzyme-catalyzed reactions with disparate timescales. Biophys. J., 95, 3563–3574

    Article  Google Scholar 

  • Barik, D., Baumann, W. T., Paul, M. R., Novak, B., & Tyson, J. J. (2010). A model of yeast cell-cycle regulation based on multisite phosphorylation. Mol. Syst. Biol., 6, 405

    Article  Google Scholar 

  • Barrio, M., Burrage, K., Leier, A., & Tian, T. (2006). Oscillatory regulation of Hes1: discrete stochastic delay modelling and simulation. PLoS ONE, 2, e117.

    Google Scholar 

  • Bernard, S., Čajavec, B., Pujo-Menjouet, L., Mackey, M. C., & Herzel, H. (2006). Modelling transcriptional feedback loops: the role of Gro/TLE1 in Hes1 oscillations. Philos. Trans. R. Soc. A, 364, 1155–1170.

    Article  MathSciNet  MATH  Google Scholar 

  • Bulcher, N. E., Gerland, U., & Hwa, T. (2005). Nonlinear protein degradation and the function of genetic circuits. Proc. Natl. Acad. Sci. USA, 102, 9559–9564.

    Article  Google Scholar 

  • Burrage, K., Burrage, P. M., Leier, A., Marquez-Lago, T., & Nicolau, D. V. Jr. (2011). Stochastic simulation for spatial modelling of dynamic processes in a living cell. In Design and analysis of biomolecular circuits: engineering approaches to systems and synthetic biology, New York: Springer.

    Google Scholar 

  • Cangiani, A., & Natalini, R. (2010). A spatial model of cellular molecular trafficking including active transport along microtubules. J. Theor. Biol., 267, 614–625.

    Article  MathSciNet  Google Scholar 

  • Chalancon, G., Ravarani, C. N. J., Balaji, S., Martinez-Arias, A., Aravind, L., Jothi, R., & Babu, M. M. (2012). Interplay between gene expression noise and regulatory network architecture. Trends Genet., 28, 221–232.

    Article  Google Scholar 

  • Demirel, M. C., So, E., Ritty, T. M., Naidu, S. H., & Lakhtakia, A. (2006). Fibroblast cell attachment and growth on nanoengineered sculptured thin films. J. Biomed. Mater. Res., Part B, Appl. Biomater., 81, 219–223.

    Google Scholar 

  • Drawert, B., Engblom, S., & Hellander, A. (2012). Urdme: a modular framework for stochastic simulation of reaction-transport processes in complex geometries. BMC Syst. Biol., 6, 76.

    Article  Google Scholar 

  • Elf, J., & Ehrenberg, M. (2004). Spontaneous separation of bi-stable biochemical systems into spatial domains of opposite phases. Syst. Biol., 1(2), 230–236.

    Article  Google Scholar 

  • Engblom, S., Ferm, L., Hellander, A., & Lötstedt, P. (2009). Simulation of stochastic reaction–diffusion processes on unstructured meshes. SIAM J. Sci. Comput., 31(3), 1774–1797.

    Article  MathSciNet  MATH  Google Scholar 

  • Fange, D., & Elf, J. (2006). Noise-induced min phenotypes in E. coli. PLoS Comput. Biol., 2, e80.

    Article  Google Scholar 

  • Geva-Zatorsky, N., Rosenfeld, N., Itzkovitz, S., Milo, R., Sigal, A., Dekel, E., Yarnitzky, T., Liron, Y., Polak, P., Lahav, G., & Alon, U. (2006). Oscillations and variability in the p53 system. Mol. Syst. Biol., 2, E1–E13.

    Article  Google Scholar 

  • Gibson, M. A., & Bruck, J. (2000). Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem., 104, 1876–1889.

    Article  Google Scholar 

  • Gillespie, D. T. (1976). A general method for simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys., 22, 403–434.

    Article  MathSciNet  Google Scholar 

  • Grima, R. (2010). Intrinsic biochemical noise in crowded intracellular conditions. J. Chem. Phys., 132, 185102.

    Article  Google Scholar 

  • Harang, R., Bonnet, G., & Petzold, L. R. (2012). Wavos: a Matlab toolkit for wavelet analysis and visualization of oscillatory systems. BMC Res. Notes, 26(5), 163.

    Article  Google Scholar 

  • Herbst, K. J., Allen, M. D., & Zhang, J. (2012). Luminscent kinase activity biosensors based on a versatile bimolecular switch. J. Am. Chem. Soc., 133, 5676–5679.

    Article  Google Scholar 

  • Hirata, H., Yoshiura, S., Ohtsuka, T., Bessho, Y., Harada, T., Yoshikawa, K., & Kageyama, R. (2002). Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science, 298, 840–843.

    Article  Google Scholar 

  • Howard, M., & Rutenberg, A. D. (2003). Pattern formation inside bacteria: fluctuations due to the low copy number of proteins. Phys. Rev. Lett., 90, 128102.

    Article  Google Scholar 

  • Iso, T., Sartorelli, V., Poizat, C., Iezzi, S., Wu, H.-Y., Chung, G., Kedes, L., & Hamamori, Y. (2001). HERP, a novel heterodimer partner of HES/E(spl) in notch signaling. Mol. Cell. Biol., 21, 6080–6089.

    Article  Google Scholar 

  • Jensen, M. H., Sneppen, J., & Tiana, G. (2003). Sustained oscillations and time delays in gene expression of protein hes1. FEBS Lett., 541, 176–177.

    Article  Google Scholar 

  • Jerke, U., Tkachuk, S., Kiyan, J., Stepanova, V., Kusch, A., Hinz, M., Dietz, R., Haller, H., Fuhrman, B., & Dumler, I. (2009). Stat1 nuclear translocation by nucleolin upon monocyte differentiation. PLoS ONE, 4, e8302.

    Article  Google Scholar 

  • Kagemyama, R., Ohtsuka, T., & Kobayashi, T. (2007). The hes1 gene family: repressors and oscillators that orchestrate embryogenesis. Development, 134, 1243–1251.

    Article  Google Scholar 

  • Kau, T. R., Way, J. C., & Silver, P. A. (2004). Nuclear transport and cancer: from mechanism to intervention. Nature, 4, 106–117.

    Google Scholar 

  • Kim, I. S., Kim, D. H., Han, S. M., Chin, M. U., Nam, H. J., Cho, H. P., Choi, S. Y., Song, B. J., Kim, E. R., Bae, Y. S., & Moon, Y. H. (2000). Truncated form of importin alpha identified in breast cancer cells inhibits nuclear import of p53. J. Biol. Chem., 275, 23139–23145.

    Article  Google Scholar 

  • Klonis, N., Rug, M., Harper, I., Wickham, M., Cowman, A., & Tilley, L. (2002). Fluorescence photobleaching analysis for the study of cellular dynamics. Eur. Biophys. J., 31, 36–51.

    Article  Google Scholar 

  • Kobayashi, T., & Kageyama, R. (2010). Hes1 regulates embryonic stem cell differentiation by suppressing notch signaling. Genes Cells, 15, 689–698.

    Article  Google Scholar 

  • Kobayashi, T., & Kageyama, R. (2011). Hes1 oscillations contribute to heterogeneous differentiation responses in embryonic stem cells. Genes, 2, 219–228.

    Article  Google Scholar 

  • Kobayashi, T., Mizuno, H., Imayoshi, I., Furusawa, C., Shirahige, K., & Kageyama, R. (2009). The cyclic gene hes1 contributes to diverse differentiation responses of embryonic stem cells. Genes Dev., 23, 1870–1875.

    Article  Google Scholar 

  • Lidke, D. S., Huang, F., Post, J. N., Rieger, B., Wilsbacher, J., Thomas, J. L., Pouysségur, J., Jovin, T. M., & Lenormand, P. (2010). ERK nuclear translocation is dimerization-independent but controller by the rate of phosphorylation. J. Biol. Chem., 285, 3092–3102.

    Article  Google Scholar 

  • Lomakin, A., & Nadezhdina, E. (2010). Dynamics of nonmembranous cell components: role of active transport along microtubules. Biochemistry, 75, 7–18.

    Google Scholar 

  • Mallat, S. A. (1999). A wavelet tour of signal processing. New York: Academic Press.

    MATH  Google Scholar 

  • Marquez-Lago, T. T., Leier, A., & Burrage, K. (2012). Anomalous diffusion and multifractional Brownian motion: simulating molecular crowding and physical obstacles in systems biology. IET Syst. Biol., 6, 134–142.

    Article  Google Scholar 

  • Masamizu, Y., Ohtsuka, T., Takashima, Y., Nagahara, H., Takenaka, Y., Yoshikawa, K., Okamura, H., & Kageyama, R. (2006). Real-time imaging of the somite segmentation clock: revelation of unstable oscillators in the individual presomitic mesoderm cells. Proc. Natl. Acad. Sci. USA, 103, 1313–1318.

    Article  Google Scholar 

  • Mendez, V., Fedotov, S., & Horsthemke, W. (2010). Reaction-transport systems. New York: Springer.

    Book  Google Scholar 

  • Momiji, H., & Monk, N. A. M. (2008). Dissecting the dynamics of the Hes1 genetic oscillator. J. Theor. Biol., 254, 784–798.

    Article  Google Scholar 

  • Monk, N. A. M. (2003). Oscillatory expression of Hes1, p53, and NF-κB driven by transcriptional time delays. Curr. Biol., 13, 1409–1413.

    Article  Google Scholar 

  • Nelson, D. E., Ihekwaba, A. E. C., Elliott, M., Johnson, J. R., Gibney, C. A., Foreman, B. E., Nelson, G., See, V., Horton, C. A., Spiller, D. G., Edwards, S. W., McDowell, H. P., Unitt, J. F., Sullivan, E., Grimley, R., Benson, N., Broomhead, D., Kell, D. B., & White, M. R. H. (2004). Oscillations in NF-κB signaling control the dynamics of gene expression. Science, 306, 704–708.

    Article  Google Scholar 

  • Nicholls, C. D., McLure, K. G., Shields, M. A., & Lee, P. W. K. (2002). Biogenesis of p53 involves cotranslational dimerisation of monomers and posttranslational dimerization of dimers. J. Biol. Chem., 277, 12937–12945.

    Article  Google Scholar 

  • Oeckinghaus, A., & Ghosh, S. (2009). The NF-κB family of transcription factors and its regulation. Cold Spring Harb. Perspect. Biol., 9, 402–412.

    Google Scholar 

  • Roussel, M. R., & Tang, T. (2012). Simulation of mRNA diffusion in the nuclear environment. IET Syst. Biol., 6, 125–133.

    Article  Google Scholar 

  • Sang, L., Coller, H. A., & Roberts, J. M. (2008). Control of the reversibility of cellular quiescence by the transcriptional repressor HES1. Science, 321, 1095–1100.

    Article  Google Scholar 

  • Sang, L., Roberts, J. M., & Coller, H. A. (2010). Hijacking HES1: tumors co-opt the anti-differentiation strategies of queiscent cells. Trends Mol. Med., 16, 17–26.

    Article  Google Scholar 

  • Scott, M., Poulin, F. J., & Tang, H. (2011). Approximating intrinsic noise in continuous multispecies models. Proc. R. Soc. A, 467, 718–737.

    Article  MathSciNet  MATH  Google Scholar 

  • Shahrezaei, V., & Swain, P. S. (2008). The stochastic nature of biochemical networks. Curr. Opin. Biotechnol., 19, 369–374.

    Article  Google Scholar 

  • Shankaran, H., Ippolito, D. L., Chrisler, W. B., Resat, H., Bollinger, N., Opresko, L. K., & Wiley, H. S. (2009). Rapid and sustained nuclear–cytoplasmic ERK oscillations induced by epidermal growth factor. Mol. Syst. Biol., 5, 332.

    Article  Google Scholar 

  • Shimojo, H., Ohtsuka, T., & Kageyama, R. (2008). Oscillations in notch signaling regulate maintenance of neural progenitors. Neuron, 58, 52–64.

    Article  Google Scholar 

  • Singh, A., Razooky, B. S., Dar, R. D., & Weinberger, L. S. (2012). Dynamics of protein noise can distinguish between alternate sources of gene-expression variability. Mol. Syst. Biol., 8, 1–9.

    Article  Google Scholar 

  • Sturrock, M., Terry, A. J., Xirodimas, D. P., Thompson, A. M., & Chaplain, M. A. J. (2011). Spatio-temporal modelling of the Hes1 and p53-Mdm2 intracellular signalling pathways. J. Theor. Biol., 273, 15–31.

    Article  MathSciNet  Google Scholar 

  • Sturrock, M., Terry, A. J., Xirodimas, D. P., Thompson, A. M., & Chaplain, M. A. J. (2012). Influence of the nuclear membrane, active transport and cell shape on the Hes1 and p53–Mdm2 pathways: insights from spatio-temporal modelling. Bull. Math. Biol., 74, 1531–1579.

    Article  MathSciNet  MATH  Google Scholar 

  • Sturrock, M., Hellander, A., Matzavinos, A., & Chaplain, M. A. J. (2013). Spatial stochastic modelling of the hes1 gene regulatory network: intrinsic noise can explain heterogeneity in embryonic stem cell differentiation. J. R. Soc. Interface, 10(80), 20120988.

    Article  Google Scholar 

  • Tafvizi, A., Mirny, L. A., & Oijen, A. M. V. (2011). Dancing on DNA: kinetic aspects of search processes on DNA. Chem. Phys. Chem., 12, 1481–1489.

    Google Scholar 

  • Takahashi, K., Tǎnase-Nicola, S., & ten Wolde, P. R. (2010). Spatio-temporal correlations can drastically change the response of a MAPK pathway. Proc. Natl. Acad. Sci. USA, 107, 2473–2478.

    Article  Google Scholar 

  • Takebayashi, K., Sasai, Y., Sakai, Y., Watanabe, T., Nakanishi, S., & Kageyama, R. (1994). Structure, chromosomal locus, and promoter analysis of the gene encoding the mouse helix-loop-helix factor HES-1. J. Biol. Chem., 269, 5150–5156.

    Google Scholar 

  • Tiana, G., Jensen, M. H., & Sneppen, K. (2002). Time delay as a key to apoptosis induction in the p53 network. Eur. Phys. J. B, 29, 135–140.

    Article  Google Scholar 

  • Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc., 79, 61–78.

    Article  Google Scholar 

  • van Zon, J. S., Morelli, M. J., Tǎnase-Nicola, S., & ten Wolde, P. R. (2006). Diffusion of transcription factors can drastically enhance the noise in gene expression. Biophys. J., 91, 4350–4367.

    Article  Google Scholar 

  • Wilkinson, D. (2009). Stochastic modelling for quantitative description of heterogeneous biological systems. Nat. Rev. Genet., 10, 122–133.

    Article  Google Scholar 

  • Yadav, A., Milu, S. M., & Horsthemke, W. (2008). Turing instability in reaction–subdiffusion systems. Phys. Rev. E, 78, 026116.

    MathSciNet  Google Scholar 

  • Yoshiura, S., Ohtsuka, T., Takenaka, Y., Nagahara, H., Yoshikawa, K., & Kageyama, R. (2007). Ultradian oscillations of Stat, Smad, and Hes1 expression in response to serum. Proc. Natl. Acad. Sci. USA, 104, 11292–11297.

    Article  Google Scholar 

  • Zeiser, S., Muller, J., & Liebscher, V. (2007). Modeling the Hes1 oscillator. J. Comput. Biol., 14, 984–1000.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the ERC Advanced Investigator Grant 227619, “M5CGS—From Mutations to Metastases: Multiscale Mathematical Modelling of Cancer Growth and Spread” and of the National Institute of Health under Award Number 1R01EB014877-01. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Health. We also acknowledge Brian Drawert for his contributions to the infrastructure facilitating URDME simulations on clusters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Hellander.

Appendix

Appendix

Parameter Sensitivity Analysis Figures for Model A

See Figs. 1317.

Fig. 13
figure 13

Plots showing the effect of varying parameter k pore (all other parameters as per Table 1). The left plot shows the fraction of time the system spends oscillating with a period in the range 0–120 minutes, 120–300 minutes and 300–PE as k pore is varied. The middle plot shows how the mean period varies as k pore is varied. The right plot shows how the CV varies for mRNA and protein as k pore is varied. As can be seen from each plot, varying k pore has little effect on the system (Color figure online)

Fig. 14
figure 14

Plots showing the effect of varying parameter k rel (all other parameters as per Table 1). The left plot shows the fraction of time the system spends oscillating with a period in the range 0–120 minutes, 120–300 minutes and 300–PE as k rel is varied. The middle plot shows how the mean period varies as k pore is varied. The right plot shows how the CV varies for mRNA and protein as k rel is varied. As can be seen from each plot, varying k rel has little effect on the system (Color figure online)

Fig. 15
figure 15

Plots showing the effect of varying the number of NPCs (all other parameters as per Table 1). The left plot shows the fraction of time the system spends oscillating with a period in the range 0–120 minutes, 120–300 minutes and 300–PE as the number of NPCs is varied. The middle plot shows how the mean period varies as the number of NPCs is varied. The right plot shows how the CV varies for mRNA and protein as the number of NPCs is varied. As can be seen from each plot, varying the number of NPCs has little effect on the system (Color figure online)

Fig. 16
figure 16

Plots showing the effect of varying parameter β 1 (all other parameters as per Table 1). The left plot shows the fraction of time the system spends oscillating with a period in the range 0–120 minutes, 120–300 minutes and 300–PE as β 1 is varied. The middle plot shows how the mean period varies as β 1 is varied. The right plot shows how the CV varies for mRNA and protein as β 1 is varied. As can be seen from the plots, varying β 1 has an impact on the mean period. The plots reveal that increasing β 1 increases the mean period (Color figure online)

Fig. 17
figure 17

Plots showing the effect of varying parameter β 2 (all other parameters as per Table 1). The left plot shows the fraction of time the system spends oscillating with a period in the range 0–120 minutes, 120–300 minutes and 300–PE as β 2 is varied. The middle plot shows how the mean period varies as β 2 is varied. The right plot shows how the CV varies for mRNA and protein as β 2 is varied. As can be seen from the plots, varying β 2 has an impact on the mean period. The plots reveal that increasing β 2 decreases the mean period (Color figure online)

Parameter Sensitivity Analysis Figures for Model B

See Figs. 1822.

Fig. 18
figure 18

Plots showing the effect of varying parameter k pore (all other parameters as per Table 1). The left plot shows the fraction of time the system spends oscillating with a period in the range 0–120 minutes, 120–300 minutes and 300–PE as k pore is varied. The middle plot shows how the mean period varies as k pore is varied. The right plot shows how the CV varies for mRNA and protein as k pore is varied. As can be seen from each plot, varying k pore has little effect on the system (Color figure online)

Fig. 19
figure 19

Plots showing the effect of varying parameter k rel (all other parameters as per Table 1). The left plot shows the fraction of time the system spends oscillating with a period in the range 0–120 minutes, 120–300 minutes and 300–PE as k rel is varied. The middle plot shows how the mean period varies as k rel is varied. The right plot shows how the CV varies for mRNA and protein as k rel is varied. As can be seen from each plot, varying k rel has little effect on the system (Color figure online)

Fig. 20
figure 20

Plots showing the effect of varying the number of NPCs (all other parameters as per Table 1). The left plot shows the fraction of time the system spends oscillating with a period in the range 0–120 minutes, 120–300 minutes and 300–PE as the number of NPCs is varied. The middle plot shows how the mean period varies as the number of NPCs is varied. The right plot shows how the CV varies for mRNA and protein as the number of NPCs is varied. As can be seen from each plot, varying the number of NPCs has little effect on the system (Color figure online)

Fig. 21
figure 21

Plots showing the effect of varying parameter β 1 (all other parameters as per Table 1). The left plot shows the fraction of time the system spends oscillating with a period in the range 0–120 minutes, 120–300 minutes and 300–PE as β 1 is varied. The middle plot shows how the mean period varies as β 1 is varied. The right plot shows how the CV varies for mRNA and protein as β 1 is varied. As can be seen from the plots, varying β 1 has a large impact on the mean period. The plots show that increasing β 1 increases the mean period (Color figure online)

Fig. 22
figure 22

Plots showing the effect of varying parameter β 2 (all other parameters as per Table 1). The left plot shows the fraction of time the system spends oscillating with a period in the range 0–120 minutes, 120–300 minutes and 300–PE as β 2 is varied. The middle plot shows how the mean period varies as β 2 is varied. The right plot shows how the CV varies for mRNA and protein as β 2 is varied. As can be seen from the plots, varying β 2 has a large impact on the mean period. The plots show that increasing β 2 decreases the mean period (Color figure online)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sturrock, M., Hellander, A., Aldakheel, S. et al. The Role of Dimerisation and Nuclear Transport in the Hes1 Gene Regulatory Network. Bull Math Biol 76, 766–798 (2014). https://doi.org/10.1007/s11538-013-9842-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9842-5

Keywords

Navigation