Skip to main content

Advertisement

Log in

Modeling and Estimation of Kinetic Parameters and Replicative Fitness of HIV-1 from Flow-Cytometry-Based Growth Competition Experiments

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Growth competition assays have been developed to quantify the relative fitness of HIV-1 mutants. In this article, we develop mathematical models to describe viral/cellular dynamic interactions in the assay system from which the competitive fitness indices or parameters are defined. In our previous HIV-viral fitness experiments, the concentration of uninfected target cells was assumed to be constant (Wu et al. 2006). But this may not be true in some experiments. In addition, dual infection may frequently occur in viral fitness experiments and may not be ignorable. Here, we relax these two assumptions and extend our earlier viral fitness model (Wu et al. 2006). The resulting models then become nonlinear ODE systems for which closed-form solutions are not achievable. In the new model, the viral relative fitness is a function of time since it depends on the target cell concentration. First, we studied the structure identifiability of the nonlinear ODE models. The identifiability analysis showed that all parameters in the proposed models are identifiable from the flow-cytometry-based experimental data that we collected. We then employed a global optimization approach (the differential evolution algorithm) to directly estimate the kinetic parameters as well as the relative fitness index in the nonlinear ODE models using nonlinear least square regression based on the experimental data. Practical identifiability was investigated via Monte Carlo simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Audoly, S., D’angio, L., Saccomani, M.P., Cobelli, C., 1998. Global identifiability of linear compartmental models. IEEE Trans. Biomed. Eng. 45, 36–47.

    Article  Google Scholar 

  • Audoly, S., Bellu, G., D’Angio, L., Saccomani, M.P., Cobelli, C., 2001. Global identifiability of nonlinear models of biological systems. IEEE Trans. Biomed. Eng. 48, 55–65.

    Article  Google Scholar 

  • Bonhoeffer, S., Barbour, A.D., De Boer, R.J., 2002. Procedures for reliable estimation of viral fitness from time-series data. Proc. R. Soc. Lond. B 269, 1887–1893.

    Article  Google Scholar 

  • Chen, J., Dang, Q., Unutmaz, D., Pathak, V.K., Maldarelli, F., Powell, D., Hu, W.S., 2005. Mechanisms of nonrandom human immunodeficiency virus type 1 infection and double infection: Preference in virus entry is important but is not the sole factor. J. Virol. 79, 4140–4149.

    Article  Google Scholar 

  • Collins, J.A., Thompson, M.G., Paintsil, E., Ricketts, M., Gedzior, J., Alexander, L., 2004. Competitive fitness of nevirapine-resistant human immunodeficiency virus type 1 mutants. J. Virol. 78, 603–611.

    Article  Google Scholar 

  • Croteau, G., Doyon, L., Thibeault, D., McKercher, G., Pilote, L., Lamarre, D., 1997. Impaired fitness of human immunodeficiency virus type 1 variants with high-level resistance to protease inhibitors. J. Virol. 71, 1089–1096.

    Google Scholar 

  • Dang, Q., Chen, J., Unutmaz, D., Coffin, J.M., Pathak, V.K., Powell, D., KewalRamani, V.N., Maldarelli, F., Hu, W.S., 2004. Nonrandom HIV-1 infection and double infection via direct and cell-mediated pathways. Proc. Natl. Acad. Sci. USA 101, 632–637.

    Article  Google Scholar 

  • Davison, A.C., Hinkley, D.V., 1997. Bootstrap Methods and Their Application. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Dixit, N.M., Perelson, A.S., 2004. Multiplicity of human immunodeficiency virus infections in lymphoid tissue. J. Virol. 78, 8942–8945.

    Article  Google Scholar 

  • Dixit, N.M., Perelson, A.S., 2005. HIV dynamics with multiple infections of target cells. Proc. Natl. Acad. Sci. USA 102, 8198–8203.

    Article  Google Scholar 

  • Dykes, C., Wang, J., Jin, X., Planelles, V., An, D.S., Tallo, A., Huang, Y., Wu, H., Demeter, L.M., 2006. Evaluation of a multiple-cycle, recombinant virus, growth competition assay that uses flow cytometry to measure replication efficiency of HIV-1 in cell culture. J. Clin. Microbiol. 44, 1930–1943.

    Article  Google Scholar 

  • Englezos, P., Kalogerakis, N., 2001. Applied Parameter Estimation for Chemical Engineers. Marcel-Dekker, New York.

    Google Scholar 

  • Fraser, C., 2005. HIV recombination: What is the impact on antiretroviral therapy? J. R. Soc. Interface 2, 489–503.

    Article  Google Scholar 

  • Goudsmit, J., De Ronde, A., Ho, D.D., Perelson, A.S., 1996. Human immunodeficiency virus fitness in vivo: Calculations based on a single zidovudine resistance mutation at codon 215 of reverse transcriptase. J. Virol. 70, 5662–5664.

    Google Scholar 

  • Goudsmit, J., De Ronde, A., De Rooij, E., De Boer, R.J., 1997. Broad spectrum of in vivo fitness of human immunodeficiency virus type 1 subpopulations differing at reverse transcriptase codons 41 and 215. J. Virol. 71, 4479–4484.

    Google Scholar 

  • Harrigan, P.R., Bloor, S., Larder, B.A., 1998. Relative replicative fitness of zidovudine-resistant human immunodeficiency virus type 1 isolates in vitro. J. Virol. 72, 3773–3778.

    Google Scholar 

  • Holland, J.J., de la Torre, J.C., Clarke, D.K., Duarte, E., 1991. Quantitation of relative fitness and great adaptability of clonal populations of RNA viruses. J. Virol. 65, 2960–2967.

    Google Scholar 

  • Hu, W.S., Temin, H.M., 1990. Genetic consequences of packaging two RNA genomes in one retroviral particle: Pseudodiploidy and high rate of genetic recombination. Proc. Natl. Acad. Sci. USA 87, 1556–1560.

    Article  Google Scholar 

  • Jeffrey, A.M., Xia, X., Craig, I., 2005. Identifiability of HIV/AIDS models. In: W.Y. Tan, H. Wu (Eds.), Deterministic and Stochastic Models of AIDS Epidemics and HIV Infections with Intervention, pp. 255–286. World Scientific, Singapore.

    Google Scholar 

  • Jung, A., Maier, R., Vartanian, J.P., Bocharov, G., Jung, V., Fischer, U., Meese, E., Wain-Hobson, S., Mayerhans, A., 2002. Multiply infected spleen cells in HIV patients. Nature 418, 144.

    Google Scholar 

  • Koval, C.E., Dykes, C., Wang, J., Demeter, L.M., 2006. Relative replication fitness of efavirenz-resistant mutants of HIV-1: correlation with frequency during clinical therapy and evidence of compensation for the reduced fitness of K103N + L100I by the nucleoside resistance mutation L74V. Virology 353(1), 184–192.

    Article  Google Scholar 

  • Levy, D.N., Aldrovandi, G.M., Kutsch, O., Shaw, G.M., 2004. Dynamics of HIV-1 recombination in its natural target cells. Proc. Natl. Acad. Sci. USA 101, 4204–4209, and correction (2005) 102, 1808.

    Article  Google Scholar 

  • Linga, P., Al-Saifi, N., Englezos, P., 2006. Comparison of the Luus–Jaakola optimization and Gauss–Newton methods for parameter estimation in ordinary differential equation models. Ind. Eng. Chem. Res. 45, 4716–4725.

    Article  Google Scholar 

  • Ljung, L., Glad, S.T., 1994. On global identifiability for arbitrary model parameterizations. Automatica 30, 265–276.

    Article  MATH  MathSciNet  Google Scholar 

  • Luus, R., Jaakola, T.H.I., 1973. Optimization by direct search and systematic reduction of size of search region. AIChE J. 19(4), 760–766.

    Article  Google Scholar 

  • Marée, A.F.M., Keulen, W., Boucher, C.A.B., De Boer, R.J., 2000. Estimating relative fitness in viral competition experiments. J. Virol. 74, 11067–11072.

    Article  Google Scholar 

  • Martinez-Picado, J., Savara, A.V., Sutton, L., D’Aquila, R.T., 1999. Replicative fitness of protease inhibitor-resistant mutants of human immunodeficiency virus type 1. J. Virol. 73, 3744–3752.

    Google Scholar 

  • Moles, C.G., Bangaa, J.R., Keller, K., 2004. Solving nonconvex climate control problems: Pitfalls and algorithm performances. Appl. Soft. Comput. 5, 35–44.

    Article  Google Scholar 

  • Nijhuis, M., Deeks, S., Boucher, C., 2001. Implications of antiretroviral resistance on viral fitness. Curr. Opin. Infect Dis. 14, 23–28.

    Article  Google Scholar 

  • Nocedal, J., Wright, S.J., 1999. Numerical Optimization. Springer, New York.

    MATH  Google Scholar 

  • Prado, J.G., Franco, S., Matamoros, T., Ruiz, L., Clotet, B., Menendez-Arias, L., Martinez, M.A., Martinez-Picado, J., 2004. Relative replication fitness of multi-nucleoside analogue-resistant HIV-1 strains bearing a dipeptide insertion in the fingers subdomain of the reverse transcriptase and mutations at codons 67 and 215. Virology 326, 103–112.

    Article  Google Scholar 

  • Price, K., Storn, R.M., Lampinen, J.A., 2005. Differential Evolution: A Practical Approach to Global Optimization. Natural Computing Series. Springer, New York.

    MATH  Google Scholar 

  • Quinones-Mateu, M.E., Ball, S.C., Marozsan, A.J., Torre, V.S., Albright, J.L., Vanham, G., van Der Groen, G., Colebunders, R.L., Arts, E.J., 2000. A dual infection/competition assay shows a correlation between ex vivo human immunodeficiency virus type 1 fitness and disease progression. J. Virol. 74, 9222–9233.

    Article  Google Scholar 

  • Quinones-Mateu, M.E., Arts, E.J., 2001. HIV-1 fitness: Implications for drug resistance, disease progression, and global epidemic evolution. In: C. Kuiken, B. Foley, B.H. Hahn, P. Marx, F.E. McCutchan, J. Mellors (Eds.), HIV Sequence Compendium 2001. Los Alamos National Laboratory, Los Alamos.

    Google Scholar 

  • Ritt, J., 1950. Differential Algebra. American Mathematical Society, Providence.

    MATH  Google Scholar 

  • Rodriguez-Fernandez, M., Egea, J.A., Banga, J.R., 2006. Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems. BMC Bioinf. 7, 483.

    Article  Google Scholar 

  • Seber, G.A.F., Wild, C.J., 1989. Nonlinear Regression. Wiley, New York.

    MATH  Google Scholar 

  • Shao, J., Tu, D., 1995. The Jackknife and Bootstrap. Springer, New York.

    MATH  Google Scholar 

  • Storn, R., Price, K., 1997. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359.

    Article  MATH  MathSciNet  Google Scholar 

  • Wu, H., Huang, Y., Dykes, C., Liu, D., Ma, J., Perelson, A.S., Demeter, L., 2006. Modeling and estimation of replication fitness of HIV-1 in vitro experiments using a growth competition assay. J. Virol. 80, 2380–2389.

    Article  Google Scholar 

  • Wu, H., Zhu, H., Miao, H., Perelson, A.S., 2008. Parameter identifiability and estimation of HIV/AIDS dynamic models. Bull. Math. Biol. 70(3), 785–799.

    Article  MathSciNet  Google Scholar 

  • Xia, X., 2003. Estimation of HIV/AIDS parameters. Automatica 39, 1983–1988.

    Article  MATH  Google Scholar 

  • Xia, X., Moog, C.H., 2003. Identifiability of nonlinear systems with applications to HIV/AIDS models. IEEE Trans. Automat. Control 48, 330–336.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hulin Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miao, H., Dykes, C., Demeter, L.M. et al. Modeling and Estimation of Kinetic Parameters and Replicative Fitness of HIV-1 from Flow-Cytometry-Based Growth Competition Experiments. Bull. Math. Biol. 70, 1749–1771 (2008). https://doi.org/10.1007/s11538-008-9323-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-008-9323-4

Keywords

Navigation