Skip to main content

Advertisement

Log in

Spatial Stochastic Models for Cancer Initiation and Progression

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The multistage carcinogenesis hypothesis has been formulated by a number of authors as a stochastic process. However, most previous models assumed “perfect mixing” in the population of cells, and included no information about spatial locations. In this work, we studied the role of spatial dynamics in carcinogenesis. We formulated a 1D spatial generalization of a constant population (Moran) birth–death process, and described the dynamics analytically. We found that in the spatial model, the probability of fixation of advantageous and disadvantageous mutants is lower, and the rate of generation of double-hit mutants (the so-called tunneling rate) is higher, compared to those for the space-free model. This means that the results previously obtained for space-free models give an underestimation for rates of cancer initiation in the case where the first event is the generation of a double-hit mutant, e.g. the inactivation of a tumor-suppressor gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

TSG:

Tumor suppressor gene

APC:

Adenomatous polyposis coli

ODE:

Ordinary differential equation

References

  • Araujo, R., McElwain, D., 2004. A history of the study of solid tumor growth: The contribution of mathematical modeling. Bull. Math Biol. 66(5), 1039–1091.

    Article  PubMed  CAS  Google Scholar 

  • Armitage, P., Doll, R., 1954. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br. J. Cancer 8(1), 1–12.

    PubMed  CAS  Google Scholar 

  • Bellomo, N., Preziosi, L., 2000. Modeling and mathematical problems related to tumor evolution and its interation with the immune system. Math. Comp. Model. 22(3/4), 413–452.

    Article  MathSciNet  Google Scholar 

  • Brown, C.C., Chu, K.C., 1983. Implications of the multistage theory of carcinogenesis applied to occupational arsenic exposure. J. Natl. Cancer Inst. 70(3), 455–463.

    PubMed  CAS  Google Scholar 

  • Chaplain, M., 1996. Avascular growth, angiogenesis and vascular growth in solid tumors. Math. Comp. Model. 23(6), 47–87.

    Article  MATH  Google Scholar 

  • Day, N.E., Brown, C.C., 1980. Multistage models and primary prevention of cancer. J. Natl. Cancer Inst. 64(4), 977–989.

    PubMed  CAS  Google Scholar 

  • Dewanji, A., Moolgavkar, S.H., Luebeck, E.G., 1991. Two-mutation model for carcinogenesis: Joint analysis of premalignant and malignant lesions. Math. Biosci. 104(1), 97–109.

    Article  PubMed  CAS  MATH  Google Scholar 

  • Frank, S.A., 2005. Age-specific incidence of inherited versus sporadic cancers: A test of the multistage theory of carcinogenesis. Proc. Natl. Acad. Sci. U.S.A. 102(4), 1071–1075.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Gatenby, R.A., Vincent, T.L., 2003. An evolutionary model of carcinogenesis. Cancer Res. 63(19), 6212–6220.

    PubMed  CAS  Google Scholar 

  • Greaves, M., 2002. Cancer causation: The Darwinian downside of past success? Lancet Oncol. 3(4), 244–251.

    Article  PubMed  CAS  Google Scholar 

  • Heidenreich, W.F., Luebeck, E.G., Moolgavkar, S.H., 1997. Some properties of the hazard function of the two-mutation clonal expansion model. Risk Anal. 17(3), 391–399.

    Article  PubMed  CAS  Google Scholar 

  • Iwasa, Y., Michor, F., Nowak, M.A., 2004. Stochastic tunnels in evolutionary dynamics. Genetics 166(3), 1571–1579.

    Article  PubMed  Google Scholar 

  • Knudson, A.G.J., 1971. Mutation and cancer: Statistical study of retinoblastoma. Proc. Natl. Acad. Sci. U.S.A. 68(4), 820–823.

    Article  PubMed  ADS  Google Scholar 

  • Komarova, N.L., Sengupta, A., Nowak, M.A., 2003. Mutation-selection networks of cancer initiation: Tumor suppressor genes and chromosomal instability. J. Theor. Biol. 223(4), 433–450.

    Article  PubMed  CAS  MathSciNet  Google Scholar 

  • Komarova, N.L., Wang, L., 2004. Initiation of colorectal cancer: Where do the two hits hit? Cell Cycle 3(12), 1558–1565.

    PubMed  CAS  Google Scholar 

  • Komarova, N.L., Wodarz, D., 2004. The optimal rate of chromosome loss for the inactivation of tumor suppressor genes in cancer. Proc. Natl. Acad. Sci. U.S.A. 101(18), 7017–7021.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Lengauer, C., Kinzler, K.W., Vogelstein, B. (1998). Genetic instabilities in human cancers. Nature 396(6712), 643–649.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Little, M.P., Wright, E.G., 2003. A stochastic carcinogenesis model incorporating genomic instability fitted to colon cancer data. Math. Biosci. 183(2), 111–134.

    Article  PubMed  CAS  MATH  MathSciNet  Google Scholar 

  • Loeb, L.A., 1991. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res. 51(12), 3075–3079.

    PubMed  CAS  Google Scholar 

  • Loeb, L.A., 2001. A mutator phenotype in cancer. Cancer Res. 61(8), 3230–3239.

    PubMed  CAS  Google Scholar 

  • Luebeck, E.G., Moolgavkar, S.H., 2002. Multistage carcinogenesis and the incidence of colorectal cancer. Proc. Natl. Acad. Sci. U.S.A. 99(23), 15095–15100.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Michor, F., Iwasa, Y., Nowak, M.A., 2004a. Dynamics of cancer progression. Nat. Rev. Cancer 4(3), 197–205.

    Article  CAS  Google Scholar 

  • Michor, F., et al., 2004b. Linear model of colon cancer initiation. Cell Cycle 3(3), 358–362.

    CAS  Google Scholar 

  • Moolgavkar, S.H., 1978. The multistage theory of carcinogenesis and the age distribution of cancer in man. J. Natl. Cancer Inst. 61(1), 49–52.

    PubMed  CAS  Google Scholar 

  • Nordling, C.O., 1983. A new theory on cancer-inducing mechanism. Br. J. Cancer 7(1), 68–72.

    Google Scholar 

  • Nowak, M.A., et al., 2002. The role of chromosomal instability in tumor initiation. Proc. Natl. Acad. Sci. U.S.A. 99(25), 16226–16231.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Nowak, M.A., et al., 2004. Evolutionary dynamics of tumor suppressor gene inactivation. Proc. Natl. Acad. Sci. U.S.A. 101(29), 10635–10638.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Parzen, E., 1999. Stochastic Processes, Vol. 24: Classics in Applied Mathematics. SIAM, Philadelphia, PA.

    Google Scholar 

  • Strachan, T., Read, A.P., 1999. Human Molecular Genetics 2. Wiley, New York.

    Google Scholar 

  • Tan, W.Y., 1991. Stochastic Models of Carcinogenesis. Marcel Dekker, New York.

    Google Scholar 

  • Tan, W.Y., Chen, C.W., 1998. Stochastic models of carcinogenesis, some new insight. Math. Comput. Model. 28, 49–71.

    Article  MATH  MathSciNet  Google Scholar 

  • Vogelstein, B., Kinzler, K.W., 1997. The Genetic Basis of Human Cancer. McGraw-Hill, New York.

    Google Scholar 

  • Vogelstein, B., Kinzler, K.W., 2004. Cancer genes and the pathways they control. Nat. Med. 10(8), 789–799.

    Article  PubMed  CAS  Google Scholar 

  • Wodarz, D., Komarova, N., 2005. Computational Biology of Cancer: Lecture Notes and Mathematical Modeling. World Scientific, Singapore.

    Google Scholar 

  • Yatabe, Y., Tavare, S., Shibata, D., 2001. Investigating stem cells in human colon by using methylation patterns. Proc. Natl. Acad. Sci. U.S.A. 98(19), 10839–10844.

    Article  PubMed  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia L. Komarova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komarova, N.L. Spatial Stochastic Models for Cancer Initiation and Progression. Bull. Math. Biol. 68, 1573–1599 (2006). https://doi.org/10.1007/s11538-005-9046-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-005-9046-8

Keywords

Navigation