Skip to main content
Log in

Experimental and numerical investigation on soft tissue dynamic response due to turbulence-induced arterial vibration

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Peripheral arterial occlusive disease is a serious cardiovascular disorder. The arterial occlusion leads to turbulent flow and arterial sound generation on the inner vessel wall. Stenosis-induced vibro-acoustic waves propagate through the surrounding soft tissues and reach the skin surface. In this study, the feasibility of noninvasive acoustic detection of the peripheral arterial stenosis is investigated using the vibration responses by means of experimental and computational models. Latex rubber tube is used to model the artery, and it is surrounded by a tissue mimicking phantom made of bovine gelatin. Vibration responses on phantom surface are measured using laser Doppler vibrometer, and computational results are obtained performing modal analysis. Experimental findings and computational results showed well agreement in terms of spectral content and vibration amplitudes. The effects of various stenosis severities, flow rates, and phantom thicknesses on the vibration responses are investigated from diagnostic perspective. Stenosis severities greater than 70% resulted in a considerable increase in vibration amplitudes. The structural mode shapes of the tissue phantom are dominant between 0 and 100 Hz, suppressing the signals generated by the stenosis. The optimum range of frequency for acoustic stenosis detection is concluded to be between 200 and 500 Hz, particularly around 300 Hz.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Acikgoz S, Ozer MB, Royston TJ, Mansy HA, Sandler RH (2008) Experimental and computational models for simulating sound propagation within the lungs. J Vib Acoust 130(2):021010

    Article  PubMed Central  Google Scholar 

  2. Akay YM, Akay M, Welkowitz W, Semmlow JL, Kostis JB (1993) Noninvasive acoustical detection of coronary artery disease: a comparative study of signal processing methods. IEEE Trans Biomed Eng 40(6):571–578

    Article  CAS  PubMed  Google Scholar 

  3. Azimpour F, Caldwell E, Tawfik P, Duval S, Wilson RF (2016) Audible coronary artery stenosis. Am J Med 129(5):515–521

    Article  PubMed  Google Scholar 

  4. Banks HT, Hu S, Kenz ZR, Kruse C, Shaw S, Whiteman J, Brewin MP, Greenwald SE, Birch MJ (2014) Model validation for a noninvasive arterial stenosis detection problem. Math Biosci Eng 11(3):427–448

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bathe KJ, Wilson EL (1973) Solution methods for eigenvalue problems in structural mechanics. Int J Numer Meth Bio 6(2):213–226

    Article  Google Scholar 

  6. Biswas M, Kuppili V, Saba L, Edla DR, Suri HS, Sharma A, Cuadrado-Godia E, Laird JR, Nicolaides A, Suri JS (2019) Deep learning fully convolution network for lumen characterization in diabetic patients using carotid ultrasound: a tool for stroke risk. Med Biol Eng Comput 57(2):543–564

    Article  PubMed  Google Scholar 

  7. Borisyuk AO (2002) Experimental study of noise produced by steady flow through a simulated vascular stenosis. J Sound Vib 256(3):475–498

    Article  Google Scholar 

  8. Borisyuk AO (2002) Modeling of noise generation by a vascular stenosis. Int J Fluid Mech Res 29(1):65–86

    Article  Google Scholar 

  9. Borisyuk AO (2003) Experimental study of wall pressure fluctuations in a pipe behind a stenosis. Int J Fluid Mech Res 30(3):264–278

    Article  Google Scholar 

  10. Borisyuk AO (2003) Model study of noise field in the human chest due to turbulent flow in a larger blood vessel. J Fluid Struct 17(8):1095–1110

    Article  Google Scholar 

  11. Borisyuk AO (2010) Experimental study of wall pressure fluctuations in rigid and elastic pipes behind an axisymmetric narrowing. J Fluid Struct 26(4):658–674

    Article  Google Scholar 

  12. Cassanova RA, Giddens DP (1978) Disorder distal to modeled stenoses in steady and pulsatile flow. J Biomech 11:441–453

    Article  CAS  PubMed  Google Scholar 

  13. Chami HA, Keyes MJ, Vita JA, Mitchell GF, Larson MG, Fan S, Vasan RS, O’Connor GT, Benjamin EJ, Gottlieb DJ (2009) Brachial artery diameter, blood flow and flow-mediated dilation in sleep-disordered breathing. Vasc Med 14(4):351–360

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chang Y, Kim N, Stenfelt S (2016) The development of a whole-head human finite-element model for simulation of the transmission of bone-conducted sound. J Acoust Soc Am 140(3):1635–1651

    Article  PubMed  Google Scholar 

  15. Chhai P, Rhee K (2018) Effect of distal thickening and stiffening of plaque cap on arterial wall mechanics. Med Biol Eng Comput 56(11):2003–2013

    Article  PubMed  Google Scholar 

  16. Clark C (1976) The fluid mechanics of aortic stenosis—I. theory and steady flow experiments. J Biomech 9(8):521–528

    Article  CAS  PubMed  Google Scholar 

  17. Clark C (1977) Turbulent wall pressure measurements in a model of aortic stenosis. J Biomech 10(8):461–472

    Article  CAS  PubMed  Google Scholar 

  18. Clough RW, Penzien J (2003) Dynamics of structures. Computers & Structures, California

    Google Scholar 

  19. Fredberg JJ (1977) Origin and character of vascular murmurs: model studies. J Acoust Soc Am 61(4):1077–1085

    Article  CAS  PubMed  Google Scholar 

  20. Gayathri K, Shailendhra K (2014) Pulsatile blood flow in large arteries: comparative study of Burton’s and McDonald’s models. Appl Math Mech 35(5):575–590

    Article  Google Scholar 

  21. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB (2013) AHA statistical update. Circulation 127:e62–e245

    Google Scholar 

  22. Guala A, Camporeale C, Ridolfi L, Mesin L (2017) Non-invasive aortic systolic pressure and pulse wave velocity estimation in a primary care setting: an in silico study. Med Eng Phys 42:91–98

    Article  PubMed  Google Scholar 

  23. Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, Finkelstein EA, Hong Y, Johnston SC, Khera A, Lloyd-Jones DM, Nelson SA, Nichol G, Orenstein D, Wilson PWF, Woo YJ (2011) Forecasting the future of cardiovascular disease in the United States. Circulation 123(8):933–944

    Article  Google Scholar 

  24. Holzapfel GA, Gasser TC, Stadler M (2002) A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. Eur J Mech A-Solid 21(3):441–463

    Article  Google Scholar 

  25. Holzapfel GA, Sommer G, Gasser CT, Regitnig P (2005) Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am J Physiol Heart Circ Physiol 289(5):H2048–H2058

    Article  CAS  PubMed  Google Scholar 

  26. Hurty WC, Rubinstein MF (1964) Dynamics of structures. Prentice-Hall, Upper Saddle River

    Google Scholar 

  27. Kirkeeide RL, Young DF, Cholvin NR (1977) Wall vibrations induced by flow through simulated stenoses in models and arteries. J Biomech 10(7):431–437

    Article  CAS  PubMed  Google Scholar 

  28. Krejza J, Arkuszewski M, Kasner SE, Weigele J, Ustymowicz A, Hurst RW, Cucchiara BL (2006) Messe SR (2006) carotid artery diameter in men and women and the relation to body and neck size. Stroke 37:1103–1105. https://doi.org/10.1161/01.STR.0000206440.48756.f7

    Article  PubMed  Google Scholar 

  29. Lees RS, Dewey CF (1970) Phonoangiography: a new noninvasive diagnostic method for studying arterial disease. Proc Natl Acad Sci U S A 67(2):935–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Olson LG, Bathe KJ (1985) Analysis of fluid-structure interactions. A direct symmetric coupled formulation based on the fluid velocity potential. Comput Struct 21(1–2):21–32

    Article  Google Scholar 

  31. Ozer MB, Acikgoz S, Royston TJ, Mansy HA, Sandler RH (2007) Boundary element model for simulating sound propagation and source localization within the lungs. J Acoust Soc Am 122(1):657–671

    Article  CAS  PubMed  Google Scholar 

  32. Rezvani-Sharif A., Tafazzoli-Shadpour M, Avolio A. (2018) Progressive changes of elastic moduli of arterial wall and atherosclerotic plaque components during plaque development in human coronary arteries. Med Biol Eng Comput 1–10

  33. Royston TJ, Mansy HA, Sandler RH (1999) Excitation and propagation of surface waves on a viscoelastic half-space with application to medical diagnosis. J Acoust Soc Am 106(6):3678–3686

    Article  CAS  PubMed  Google Scholar 

  34. Royston TJ, Yazicioglu Y, Loth F (2003) Surface response of a viscoelastic medium to subsurface acoustic sources with application to medical diagnosis. J Acoust Soc Am 113(2):1109–1121

    Article  PubMed  Google Scholar 

  35. Salman HE, Sert C, Yazicioglu Y (2013) Computational analysis of high frequency fluid–structure interactions in constricted flow. Comput Struct 122:145–154

    Article  Google Scholar 

  36. Salman HE, Yazicioglu Y (2017) Flow-induced vibration analysis of constricted artery models with surrounding soft tissue. J Acoust Soc Am 142(4):1913–1925

    Article  PubMed  Google Scholar 

  37. Sandgren T, Sonesson B, Ahlgren ÅR, Länne T (1999) The diameter of the common femoral artery in healthy human: influence of sex, age, and body size. J Vasc Surg 29(3):503–510

    Article  CAS  PubMed  Google Scholar 

  38. Sazonov I, Khir AW, Hacham WS, Boileau E, Carson JM, van Loon R, Ferguson C, Nithiarasu P (2017) A novel method for non-invasively detecting the severity and location of aortic aneurysms. Biomech Model Mechanobiol 16(4):1225–1242

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sussman T, Bathe KJ (1987) A finite element formulation for nonlinear incompressible elastic and inelastic analysis. Comput Struct 26(1–2):357–409

    Article  Google Scholar 

  40. Sussman T, Sundqvist J (2003) Fluid–structure interaction analysis with a subsonic potential-based fluid formulation. Comput Struct 81(8):949–962

    Article  Google Scholar 

  41. Thomas JL, Winther S, Wilson R, Bøttcher M (2017) A novel approach to diagnosing coronary artery disease: acoustic detection of coronary turbulence. Int J Card Imaging 33(1):129–136

    Article  Google Scholar 

  42. Tobin RJ, Chang ID (1976) Wall pressure spectra scaling downstream of stenoses in steady tube flow. J Biomech 9(10):633–640

    Article  CAS  PubMed  Google Scholar 

  43. Van Loocke M, Lyons CG, Simms CK (2008) Viscoelastic properties of passive skeletal muscle in compression: stress-relaxation behaviour and constitutive modelling. J Biomech 41(7):1555–1566

    Article  PubMed  Google Scholar 

  44. Wang JZ, Tie BING, Welkowitz W, Semmlow JL, Kostis JB (1990) Modeling sound generation in stenosed coronary arteries. IEEE Trans Biomed Eng 37(11):1087–1094

    Article  CAS  PubMed  Google Scholar 

  45. Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N (2017) Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS One 12(4):e0174944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Winther S, Nissen L, Schmidt SE, Westra JS, Rasmussen LD, Knudsen LL, Madsen LH, Johansen JK, Larsen BS, Struijk JJ, Frost L, Holm NR, Christiansen EH, Botker HE, Bøttcher M (2018) Diagnostic performance of an acoustic-based system for coronary artery disease risk stratification. Heart 104(11):928–935

    Article  PubMed  Google Scholar 

  47. Yazicioglu Y, Royston TJ, Spohnholtz T, Martin B, Loth F, Bassiouny HS (2005) Acoustic radiation from a fluid-filled, subsurface vascular tube with internal turbulent flow due to a constriction. J Acoust Soc Am 118(2):1193–1209

    Article  PubMed  PubMed Central  Google Scholar 

  48. Young DF (1979) Fluid mechanics of arterial stenosis. J Biomech Eng 101(3):157–175

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Oguz Uzol for the use of the facilities of the Center for Wind Energy (METUWIND) at Middle East Technical University.

Funding

This work is internally supported by Middle East Technical University (METU) Scientific Research Project (BAP) funding with grant number BAP-03-02-2015-006. The authors acknowledge the financial support from the Turkish Scientific and Technical Research Council (TUBITAK) under 2211/C program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huseyin Enes Salman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salman, H.E., Yazicioglu, Y. Experimental and numerical investigation on soft tissue dynamic response due to turbulence-induced arterial vibration. Med Biol Eng Comput 57, 1737–1752 (2019). https://doi.org/10.1007/s11517-019-01995-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-019-01995-y

Keywords

Navigation