Skip to main content
Log in

Design of an online-tuned model based compound controller for a fully automated artificial pancreas

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

This paper deals with the development of a control algorithm that can predict optimal insulin doses without patients’ intervention in fully automated artificial pancreas system. An online-tuned model based compound controller comprising an online-tuned internal model control (IMC) algorithm and an enhanced IMC (eIMC) algorithm along with a meal detection module is proposed. Volterra models, used to develop IMC and eIMC algorithms, are developed online using recursive least squares (RLS) filter. The time domain kernels, computed online using RLS filter, are converted into frequency domain to obtain Volterra transfer function (VTF). VTFs are used to develop both IMC and eIMC algorithms. The compound controller is designed in such a way that eIMC predicts insulin doses when the glucose rate increase detector of meal detection module is positive, otherwise conventional IMC takes the control action. Experimental results show that the compound controller performs robustly in the presence of higher and irregular amounts of meal disturbances at random times, very high actuator and sensor noises and also with the variation in insulin sensitivity. The combination of compound control strategy and meal detection module compensates the shortcomings of both slow subcutaneous insulin action that causes postprandial hyperglycemia, and delayed peak of action that causes hypoglycaemia.

A fully-automated artificial pancreas system containing glucose sensor, insulin pump and control algorithm. Block diagram showing the control algorithm i.e., online-tuned compound IMC comprising enhanced IMC, conventional IMC and meal detection module, developed in the present work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. This paper is a full version of the abstract that appeared in ATTD 2017 [29].

References

  1. Howey DC (2002) The treatment of diabetes mellitus. J Med Pharmacology 7(5):1–9

    Google Scholar 

  2. Dalla Man C, Rizza RA, Cobelli C (2007) Meal simulation model of the glucose-insulin system. IEEE Trans Biomed Eng 54(10):1740–1749

    Article  PubMed  Google Scholar 

  3. Dalla Man C, Raimondo DM, Rizza RA, Cobelli C (2007) GIM, simulation software of meal glucose–insulin model. J Diabetes Sci Technol 1(3):323–330

    Article  PubMed  PubMed Central  Google Scholar 

  4. Magni L, Raimondo DM, Bossi L, Man CD, De Nicolao G, Kovatchev B, Cobelli C (2007) Model predictive control of type 1 diabetes: an in silico trial. J Diabetes Sci Technol 1(6):804–812

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cobelli C, Renard E, Kovatchev B (2011) Artificial pancreas: past, present, future. Diabetes 60 (11):2672–2682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kovatchev B, Tamborlane WV, Cefalu WT, Cobelli C (2016) The artificial pancreas in 2016: a digital treatment ecosystem for diabetes. Diabetes Care 39(7):1123–1126

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ghorbani M, Bogdan P (2014) Challenges and opportunities in design of control algorithm for artificial pancreas. Fifth workshop on medical cyber physical systems (MCPS’14), pp 49–57, 14 April

  8. El Youssef J, Castleemail J, Kenneth Ward W (2009) A review of closed-loop algorithms for glycemic control in the treatment of type 1 diabetes. Algorithm 2(1):518–532

    Article  CAS  Google Scholar 

  9. Atlas E, Nimri R, Miller S, Grunberg EA, Phillip M (2010) MD-logic artificial pancreas system. Diabetes Care 33(5):1072–1076

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sasi AYB, Elmalki MA (2013) A fuzzy controller for blood glucose-insulin system. J Signal and Inform Process 4:111–117

    Article  Google Scholar 

  11. Patek SD, Breton MD, Chen Y, Solomon C, Kovatchev B (2007) Linear quadratic gaussian-based closed-loop control of type 1 diabetes. J Diabetes Sci Technol 1(6):834–841

    Article  PubMed  PubMed Central  Google Scholar 

  12. Colmegna P, Pena RSS, Gondhalekar R, Dassau E, Doyle FJ III (2014) Reducing risks in type 1 diabetes using H control. IEEE Tran Biomed Eng 61(12):2939–2947

    Article  Google Scholar 

  13. Magni L, Forgione M, Toffanin C, Man CD, Kovatchev B, De Nicolao G, Cobelli C (2009) Run-to-run tuning of model predictive control for type 1 diabetes subjects: in silico trial. J Diabetes Sci Tech 3 (5):1091–1098

    Article  Google Scholar 

  14. Magni L, Raimondo D, Dalla Man C, De Nicolao G, Kovatchev B, Cobelli C (2009) Model predictive control of glucose concentration in type I diabetic patients: an in silico trial. Biomed Signal Process Control 4(4):338–346

    Article  Google Scholar 

  15. Soru P, De Nicolao G, Toffanin C, Dalla Man C, Magni CCL (2012) MPC based artificial pancreas: strategies for individualization and meal compensation. Annu Rev Control 36(1):118–128

    Article  Google Scholar 

  16. Lee JJ, Dassau E, Zisser H, Harvey RA, Jovanovič L, Doyle FJ III (2013) In silico evaluation of an artificial pancreas combining exogenous ultrafast-acting technosphere insulin with zone model predictive control. J Diabetes Sci Tech 7(1):215–226

    Article  Google Scholar 

  17. Wang Y, Dassau E, Zisser H, Jovanovic L, Doyle FJ III (2010) Automatic bolus and adaptive basal algorithm for the artificial pancreatic β-cell. Diabetes Technol Ther 12(11):879–887

    Article  PubMed  Google Scholar 

  18. van Heusden K, Dassau E, Zisser HC, Seborg DE, Doyle FJ III (2012) Control-relevant models for glucose control using a priori patient characteristics. IEEE Trans Biomed Eng 59(7):1839–1849

    Article  PubMed  Google Scholar 

  19. Messori M, Ellis M, Cobelli C, Christofides PD, Magni L (2015) Improved postprandial glucose control with a customized model predictive controller. American Control Conference (ACC)

  20. Lee JB, Dassau E, Seborg DE, Doyle IJ (2013) Model-based personalization scheme of an artificial pancreas for type 1 diabetes applications. American Control Conference (ACC)

  21. Gondhalekar R, Dassau E, Doyle FJ III (2016) Periodic zone-MPC with asymmetric costs for outpatient-ready safety of an artificial pancreas to treat type 1 diabetes. Automatica 71:237–246

    Article  PubMed  PubMed Central  Google Scholar 

  22. Copp DA, Gondhalekar R, Doyle FJ III, Hespanha JP An output-feedback model predictive control with moving horizon estimation approach to the treatment of t1dm with an artificial pancreas, Communicated to the proceedings of the 54th IEEE conference on decision and control (CDC15). (Unpublished)

  23. Messori M, Toffanin C, Del Favero S, De Nicolao G, Cobelli C, Magni L (2015) A nonparametric approach for model individualization in an artificial pancreas, 9th IFAC symposium on biological and medical systems (BMS 2015) August-September

  24. Turksoy K, Bayrak ES, Quinn L, Littlejohn E, Cinar A (2013) Multivariable adaptive closed-loop control of an artificial pancreas without meal and activity announcement. Diabetes Technol Ther 15(15):386–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Grosman B, Dassau E, Zisser HC, Jovanovic L, Doyle FJ III (2010) Zone model predictive control: a strategy to minimize hyper- and hypoglycemic events. J Diabetes Sci Technol 4(4):961–975

    Article  PubMed  PubMed Central  Google Scholar 

  26. Laguna-Sanz AJ, Doyle FJ III, Dassau E (2016) An enhanced model predictive control for the artificial pancreas using a confidence index based on residual analysis of past predictions. J Diabetes Sci Technol 11(3):537–544

    Article  PubMed  PubMed Central  Google Scholar 

  27. Doyle FJ III, Ogunnaike BA, Pearson RK (1995) Nonlinear model based control using second-order volterra models. Automatica 31(5):697–714

    Article  Google Scholar 

  28. Kashiwagi H, Li Y (2004) Nonparametric nonlinear model predictive control. J Chem Eng 21(2):329–337

    CAS  Google Scholar 

  29. Bhattacharjee A, Easwaran A, Leow MK-S, Cho N (2017) Online-tuned model based compound controller for blood glucose regulation in type 1 diabetic patient, 10th international conference on advanced technologies and treatments for diabetes (ATTD)

  30. Steil GM, Rebrin K, Darwin C, Hariri F, Saad MF (2006) Feasibility of automating insulin delivery for the treatment of type 1 diabetes. Diabetes 55:3344–3350

    Article  CAS  PubMed  Google Scholar 

  31. Weinzimer SA, Steil GM, Swan KL, Dziura J, Kurtz N, Tamborlane WV (2008) Fully automated closed-loop insulin delivery versus semiautomated hybrid control in pediatric patients with type 1 diabetes using an artificial pancreas. Diabetes Care 31:934–939

    Article  PubMed  Google Scholar 

  32. Bhattacharjee A, Sutradhar A (2016) Data driven nonparametric identification and model based control of glucose-insulin process in type-1 diabetics. J Process Control 41:14–25

    Article  CAS  Google Scholar 

  33. Bhattacharjee A, Easwaran A, Leow MK-S, Cho N (2018) Evaluation of an artificial pancreas in in silico patients with online-tuned internal model control. Biomed Signal Process Control 41:198–209

    Article  Google Scholar 

  34. Kovatchev B, Breton M, Man CD, Cobelli C (2009) In silico preclinical trials: a proof of concept in closed-loop control of diabetes. J Diabetes Sci Technol 3(1):44–55

    Article  PubMed  PubMed Central  Google Scholar 

  35. Harvey RA, Dassau E, Zisser H, Seborg DE, Doyle IJ (2014) Design of the glucose rate increase detector: a meal detection module for the health monitoring system. J Diabetes Sci Technol 8(2):307–320

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ramprasad Y, Rangaiah GP, Lakshminarayanan S (2006) Enhanced IMC for glucose control in type 1 diabetics using a detailed physiological model. Food Bioprod Process 84(C3):227–236

    Article  CAS  Google Scholar 

  37. Zhu HA, Hong GS, Teo CL, Poo AN (2007) Internal model control with enhanced robustness. Int J Syst Sci 26(2):277–293

    Article  Google Scholar 

  38. Budura G, Botoca C (2006) Efficient implementation of the third order RLS adaptive volterra filter. SER: ELEC ENERG 19(1):133–141

    Google Scholar 

  39. Bhattacharjee A, Sengupta A, Sutradhar A (2010) Nonparametric modeling of glucose-insulin process in IDDM patient using Hammerstein-Wiener model. In: Proceedings of the 11th international conference on control, automation, robotics and vision (ICARCV 2010), Singapore

  40. Bhattacharjee A, Sutradhar A (2010) Frequency domain hammerstein model of glucose-insulin process in IDDM patient. In: Proceedings of the international conference on systems in medicine and biology (ICSMB 2010), IIT Kharagpur

  41. Kovatchev B, Cox DJ, Gonder-Frederick LA, Clarke WL (2003) Methods for quantifying self-monitoring blood glucose profiles exemplified by an examination of blood glucose patterns in patients with type 1 and type 2 diabetes. Diabetes Technol Ther 4(3):295–303

    Article  Google Scholar 

  42. Magni L, Raimondo D, Dalla Man C, Breton M, Patek S, De Nicolao G, Cobelli C, Kovatchev B (2008) Evaluating the efficacy of closed-loop glucose regulation via control-variability grid analysis. J Diabetes Sci Technol 2(4):630–635

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank their funding source, NTU-NHG Ageing Research Grant: ARG/14015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpita Bhattacharjee.

Ethics declarations

Conflict of interest

No financial and personal relationships with other people or organisations exists that can bias this research work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharjee, A., Easwaran, A., Leow, M.KS. et al. Design of an online-tuned model based compound controller for a fully automated artificial pancreas. Med Biol Eng Comput 57, 1437–1449 (2019). https://doi.org/10.1007/s11517-019-01972-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-019-01972-5

Keywords

Navigation